scholarly journals Dietary Supplementation throughout Life with Non-Digestible Oligosaccharides and/or n-3 Poly-Unsaturated Fatty Acids in Healthy Mice Modulates the Gut–Immune System–Brain Axis

Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 173
Author(s):  
Kirsten Szklany ◽  
Phillip A. Engen ◽  
Ankur Naqib ◽  
Stefan J. Green ◽  
Ali Keshavarzian ◽  
...  

The composition and activity of the intestinal microbial community structures can be beneficially modulated by nutritional components such as non-digestible oligosaccharides and omega-3 poly-unsaturated fatty acids (n-3 PUFAs). These components affect immune function, brain development and behaviour. We investigated the additive effect of a dietary combination of scGOS:lcFOS and n-3 PUFAs on caecal content microbial community structures and development of the immune system, brain and behaviour from day of birth to early adulthood in healthy mice. Male BALB/cByJ mice received a control or enriched diet with a combination of scGOS:lcFOS (9:1) and 6% tuna oil (n-3 PUFAs) or individually scGOS:lcFOS (9:1) or 6% tuna oil (n-3 PUFAs). Behaviour, caecal content microbiota composition, short-chain fatty acid levels, brain monoamine levels, enterochromaffin cells and immune parameters in the mesenteric lymph nodes (MLN) and spleen were assessed. Caecal content microbial community structures displayed differences between the control and dietary groups, and between the dietary groups. Compared to control diet, the scGOS:lcFOS and combination diets increased caecal saccharolytic fermentation activity. The diets enhanced the number of enterochromaffin cells. The combination diet had no effects on the immune cells. Although the dietary effect on behaviour was limited, serotonin and serotonin metabolite levels in the amygdala were increased in the combination diet group. The combination and individual interventions affected caecal content microbial profiles, but had limited effects on behaviour and the immune system. No apparent additive effect was observed when scGOS:lcFOS and n-3 PUFAs were combined. The results suggest that scGOS:lcFOS and n-3 PUFAs together create a balance—the best of both in a healthy host.

1999 ◽  
Vol 65 (8) ◽  
pp. 3566-3574 ◽  
Author(s):  
Sarah J. MacNaughton ◽  
John R. Stephen ◽  
Albert D. Venosa ◽  
Gregory A. Davis ◽  
Yun-Juan Chang ◽  
...  

ABSTRACT Three crude oil bioremediation techniques were applied in a randomized block field experiment simulating a coastal oil spill. Four treatments (no oil control, oil alone, oil plus nutrients, and oil plus nutrients plus an indigenous inoculum) were applied. In situ microbial community structures were monitored by phospholipid fatty acid (PLFA) analysis and 16S rDNA PCR-denaturing gradient gel electrophoresis (DGGE) to (i) identify the bacterial community members responsible for the decontamination of the site and (ii) define an end point for the removal of the hydrocarbon substrate. The results of PLFA analysis demonstrated a community shift in all plots from primarily eukaryotic biomass to gram-negative bacterial biomass with time. PLFA profiles from the oiled plots suggested increased gram-negative biomass and adaptation to metabolic stress compared to unoiled controls. DGGE analysis of untreated control plots revealed a simple, dynamic dominant population structure throughout the experiment. This banding pattern disappeared in all oiled plots, indicating that the structure and diversity of the dominant bacterial community changed substantially. No consistent differences were detected between nutrient-amended and indigenous inoculum-treated plots, but both differed from the oil-only plots. Prominent bands were excised for sequence analysis and indicated that oil treatment encouraged the growth of gram-negative microorganisms within the α-proteobacteria andFlexibacter-Cytophaga-Bacteroides phylum. α-Proteobacteria were never detected in unoiled controls. PLFA analysis indicated that by week 14 the microbial community structures of the oiled plots were becoming similar to those of the unoiled controls from the same time point, but DGGE analysis suggested that major differences in the bacterial communities remained.


Sign in / Sign up

Export Citation Format

Share Document