scholarly journals Increased Salt Intake Decreases Diet-Induced Thermogenesis in Healthy Volunteers: A Randomized Placebo-Controlled Study

Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 253
Author(s):  
Anja Mähler ◽  
Samuel Klamer ◽  
András Maifeld ◽  
Hendrik Bartolomaeus ◽  
Lajos Markó ◽  
...  

High salt intake ranks among the most important risk factors for noncommunicable diseases. Western diets, which are typically high in salt, are associated with a high prevalence of obesity. High salt is thought to be a potential risk factor for obesity independent of energy intake, although the underlying mechanisms are insufficiently understood. A high salt diet could influence energy expenditure (EE), specifically diet-induced thermogenesis (DIT), which accounts for about 10% of total EE. We aimed to investigate the influence of high salt on DIT. In a randomized, double-blind, placebo-controlled, parallel-group study, 40 healthy subjects received either 6 g/d salt (NaCl) or placebo in capsules over 2 weeks. Before and after the intervention, resting EE, DIT, body composition, food intake, 24 h urine analysis, and blood pressure were obtained. EE was measured by indirect calorimetry after a 12 h overnight fast and a standardized 440 kcal meal. Thirty-eight subjects completed the study. Salt intake from foods was 6 g/d in both groups, resulting in a total salt intake of 12 g/d in the salt group and 6 g/d in the placebo group. Urine sodium increased by 2.29 g/d (p < 0.0001) in the salt group, indicating overall compliance. The change in DIT differed significantly between groups (placebo vs. salt, p = 0.023). DIT decreased by 1.3% in the salt group (p = 0.048), but increased by 0.6% in the placebo group (NS). Substrate oxidation indicated by respiratory exchange ratio, body composition, resting blood pressure, fluid intake, hydration, and urine volume did not change significantly in either group. A moderate short-term increase in salt intake decreased DIT after a standardized meal. This effect could at least partially contribute to the observed weight gain in populations consuming a Western diet high in salt.

Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Keyona N King-Medina ◽  
Emily Henson ◽  
Pablo Ortiz

Human consumption of fructose as a sweetener has increased in the past 30 years. High fructose intake has been implicated in the development of hypertension, diabetes, and obesity. In the US, the upper 10th percentile of the population consumes up to 40% of their caloric intake from added sugars, in which fructose represents half of these. Fructose metabolism is strikingly different from that of glucose. Yet, the effect of a fructose or glucose-enriched diet in salt handling by the kidney, affecting blood pressure, and its interaction with high salt intake has been poorly studied. In genetic models of salt-sensitive hypertension, the activity of the Na + /K + /2Cl - cotransporter (NKCC2) in the thick ascending limb (TAL) is abnormally enhanced. We hypothesized that chronic fructose in drinking water induces a salt-dependent increase in blood pressure and stimulates NKCC2 during high salt intake in normal rats. Sprague-Dawley rats were given 20% fructose or 20% glucose in drinking water for 1 week after which a high salt (HS) diet (4% Na + in chow) was started for 3 weeks. When we measured systolic blood pressure (SBP) by tail cuff plethysmography in fructose-fed and glucose-fed rats on a HS diet, only the fructose-fed rats had an increased SBP from 120±10 to 132±6 mmHg on day 7 of HS (p<0.01). SBP continued to increase up to 144±18 mmHg after 3 weeks (p<0.01 vs glucose). Fructose or glucose alone did not increase SBP after 4 weeks. We then repeated the protocol using radiotelemetry to monitor the blood pressure (BP). In rats fed fructose, by day 5 of HS the SBP increased by 12±3 mmHg (p<0.02) and SBP remained elevated for 3 weeks (delta: 10±2.5 mmHg, n=3). In rats fed glucose, a HS diet did not significantly change SBP for 3 weeks (n=5). Moreover, NKCC2 activity in the TAL is enhanced by phosphorylation at Thr96, 101. We found that NKCC2 phosphorylation was higher in rats fed fructose plus HS (p<0.02) but not in rats fed glucose plus HS for 3 weeks (HS: 100, fructose+HS: 250±40%, glucose+HS: 95±10%). Therefore, we conclude that a high fructose (but not a glucose) diet in normal rats induces a salt-dependent increase in BP independently from caloric intake. Thus, the increase in BP may in part be due to the stimulation of NKCC2 phosphorylation in the TAL by fructose.


Author(s):  
Christine Y Bakhoum ◽  
Cheryl A M Anderson ◽  
Stephen P Juraschek ◽  
Casey M Rebholz ◽  
Lawrence J Appel ◽  
...  

Abstract BACKGROUND Uromodulin modulates the sodium-potassium-two-chloride transporter in the thick ascending limb of the loop of Henle, and its overexpression in murine models leads to salt-induced hypertension. We hypothesized that individuals with higher baseline levels of urine uromodulin would have a greater increase in systolic blood pressure (SBP) for the same increase in sodium compared with those with lower uromodulin levels. METHODS We used data from 157 subjects randomized to the control diet of the Dietary Approaches to Stop Hypertension (DASH)-Sodium trial who were assigned to 30 days of low (1,500 mg/d), medium (2,400 mg/d), and high salt (3,300 mg/d) diets in random order. Blood pressure was measured prerandomization and then weekly during each feeding period. We evaluated the association of prerandomization urine uromodulin with change in SBP between diets, as measured at the end of each feeding period, using multivariable linear regression. RESULTS Baseline urine uromodulin stratified by tertiles was ≤17.64, 17.65–31.97, and ≥31.98 µg/ml. Across the tertiles, there were no significant differences in SBP at baseline, nor was there a differential effect of sodium diet on SBP across tertiles (low to high, P = 0.81). After adjusting for age, sex, body mass index, and race, uromodulin levels were not significantly associated with SBP change from low to high sodium diet (P = 0.42). CONCLUSIONS In a randomized trial of different levels of salt intake, higher urine uromodulin levels were not associated with a greater increase in blood pressure in response to high salt intake.


2020 ◽  
Vol 33 (4) ◽  
pp. 371-371
Author(s):  
Hong-yi Wang ◽  
Yong-jie He ◽  
Wei Li ◽  
Fan Yang ◽  
Ning-ling Sun

Abstract Background To survey the relationship between salt intake and blood pressure in hypertensive patients in Beijing. Methods A cross-sectional survey was used. Essential hypertensive patients were enrolled and divided into three groups (low, medium, and high salt intake) according to their 24 h urinary sodium excretion, which was used to access the salt intake. Blood pressure was measured through office measurement and ambulatory blood pressure monitoring. Results A total of 2,241 patients were enrolled with a mean age of 59.5 ± 13.8 years, mean blood pressure of 141.1 ± 18.5/84.6 ± 12.7 mm Hg, and urinary sodium excretion of 163.9 (95% CI 160.3–167.4) mmol [equal to salt intake 9.59 (9.38–9.79) g/d]. There were 1,544 cases from tertiary hospitals and the other 697 cases from community hospitals. Patients from community hospitals took more salt than patients from tertiary hospitals. Patients with high salt intake were younger than patients with low and medium salt intake. There were more males in high salt intake group than in the other two groups. Ambulatory blood pressure monitoring showed that patients with high salt intake had higher mean blood pressure not only in daytime, but also at night. The diastolic blood pressure in patients with medium salt intake was higher than that in patients with low salt intake. Conclusions Higher salt intake was associated with higher ambulatory blood pressure in hypertensive patients. More effort should be made to lower salt intake to improve blood pressure control rate.


Author(s):  
Matthew C. Babcock ◽  
Austin T. Robinson ◽  
Kamila U. Migdal ◽  
Joseph C. Watso ◽  
Christopher R. Martens ◽  
...  

2015 ◽  
Vol 9 (4) ◽  
pp. e72
Author(s):  
Katarzyna Stolarz-Skrzypek ◽  
Adam Bednarski ◽  
Grzegorz Kiełbasa ◽  
Malgorzata Kloch-Badelek ◽  
Danuta Czarnecka

2012 ◽  
Vol 27 (9) ◽  
pp. 3464-3476 ◽  
Author(s):  
G. Piecha ◽  
N. Koleganova ◽  
E. Ritz ◽  
A. Muller ◽  
O. V. Fedorova ◽  
...  

1981 ◽  
Vol 3 (3) ◽  
pp. 509-522 ◽  
Author(s):  
Friedrich C. Luft ◽  
Laura I. Rankin ◽  
Andrew P. Evan ◽  
Lynn R. Willis ◽  
Julia B. Clark

2006 ◽  
Vol 20 (4) ◽  
Author(s):  
Drew Alan Hildebrandt ◽  
Thomas E. Lohmeier ◽  
Eric D. Irwin ◽  
Martin A. Rossing ◽  
Robert S. Kieval

Sign in / Sign up

Export Citation Format

Share Document