scholarly journals Toric Intraocular Lens Results Considering Posterior Corneal Astigmatism with Online Calculators: Phacoemulsification vs. Femtosecond

Optics ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 184-192
Author(s):  
Joaquín Fernández ◽  
Manuel Rodríguez-Vallejo ◽  
Noemí Burguera ◽  
Patrizia Salvestrini ◽  
Nuria Garzón

To evaluate the prediction error (PE) obtained in Phacoemulsification (Phaco) or Femtosecond (Femto) surgeries without considering posterior corneal astigmatism correction (non-PCA) versus the correction based on Abulafia-Koch + Medicontur (AK) and Barrett calculators in toric intraocular lens (IOL) power calculation. 58 right eyes were retrospectively retrieved from our database. Two groups formed by 28 and 30 eyes depending on the surgery type, Phaco or Femto respectively, were defined. Astigmatism PE were evaluated considering the approach used for calculation of the implanted IOL power (AK) versus the estimation of PEs in non-PCA and Barrett formula. A doubly-multivariate analysis was conducted to assess the differences between-surgery types, within-methods of calculation, and interaction. Mean centroid PE was significantly different between non-PCA, AK and Barrett approaches (p < 0.0005), and neither differences (p < 0.239) nor interaction (p = 0.672) between Phaco or Femto were found. Post-hoc univariate analysis showed a higher PE for the x-component of the non-PCA method versus AK (0.15 D, p < 0.0005) and non-PCA versus Barrett (0.18 D, p < 0.0005), though no differences were found between AK and Barrett (0.03 D, p = 0.93). Against-the-rule under-correction and with-the-rule overcorrection were found in both arms when PCA was not considered. Both calculators provide comparable clinical results.

2019 ◽  
Vol 34 (2) ◽  
Author(s):  
Sidra Anwar, Atif Mansoor Ahmad, Irum Abbas, Zyeima Arif

Purpose: To compare post-operative mean refractive error with SandersRetzlaff-Kraff/theoretical (SRK-T) and Holladay 1 formulae for intraocular lens (IOL) power calculation in cataract patients with longer axial lengths. Study Design: Randomized controlled trial. Place and Duration of Study: Department of Ophthalmology, Shaikh Zayed Hospital Lahore from 01 January 2017 01 January, 2018. Material and Methods: A total of 80 patients were selected from Ophthalmology Outdoor of Shaikh Zayed Hospital Lahore. The patients were randomly divided into two groups of 40 each by lottery method. IOL power calculation was done in group A using SRK-T formula and in group B using Holladay1 formula after keratomery and A-scan. All patients underwent phacoemulsification with foldable lens implantation. Post-operative refractive error was measured after one month and mean error was calculated and compared between the two groups. Results: Eighty cases were included in the study with a mean age of 55.8 ± 6.2 years. The mean axial length was 25.63 ± 0.78mm, and the mean keratometric power was 43.68 ± 1.1 D. The mean post-operative refractive error in group A (SRK/T) was +0.36D ± 0.33D and in group B (Holladay 1) it was +0.68 ± 0.43. The Mean Error in group A was +0.37D ± 0.31D as compared to +0.69D ± 0.44D in group B. Conclusion: SRK/T formula is superior to Holladay 1 formula for cases having longer axial lengths. Key words: Phacoemulsification, intraocular lens power, longer axial length, biometry.


2020 ◽  
pp. 112067212096203
Author(s):  
David Carmona-González ◽  
Alfredo Castillo-Gómez ◽  
Carlos Palomino-Bautista ◽  
Marta Romero-Domínguez ◽  
María Ángeles Gutiérrez-Moreno

Purpose To compare the accuracy of 11 intraocular lens (IOL) power calculation formulas (SRK-T, Hoffer Q, Holladay I, Haigis, Holladay II, Olsen, Barrett Universal II, Hill-RBF, Ladas Super formula, EVO and Kane). Setting Private university hospital (QuironSalud, Madrid, Spain). Design Retrospective case series Methods Data were compiled from 481 eyes of 481 patients who had undergone uneventful cataract surgery with IOL insertion. Preoperative biometric measurements were made using an IOL Master® 700. Respective ULIB IOL constants ( http://ocusoft.de/ulib/c1.htm ) for each of 4 IOL models implanted were used to calculate the predictive refractive outcome for each formula. This was compared with the actual refractive outcome determined 3 months postoperatively. The primary outcome was mean absolute prediction error (MAE). The study sample was divided according to axial length (AL) into three groups of eyes: short (⩽22.00 mm), normal (22.00–25.00 mm) and long (⩾25.00 mm). Results The Barrett Universal II and Haigis formulas yielded the lowest MAEs over the entire AL range ( p < .01, except EVO) as well as in the long ( p < .01, all formulas) and normal ( p < .01, except Haigis, Holladay II, Olsen and LSF) eyes. In the short eyes, the lower MAEs were provided by Haigis and EVO ( p < .01 except Hoffer Q, SRK/T and Holladay I). Conclusions Barrett Universal II was the most accurate for IOL power calculation in the normal and long eyes. For short eyes, the formulas Haigis and EVO seem best at predicting refractive outcomes.


2018 ◽  
Vol 9 (2) ◽  
pp. 264-268
Author(s):  
Tao Ming Thomas Chia ◽  
Hoon C. Jung

We report a case of patient dissatisfaction after sequential myopic and hyperopic LASIK in the same eye. We discuss the course of management for this patient involving eventual cataract extraction and intraocular lens (IOL) implantation with attention to the IOL power calculation method used.


2021 ◽  
Author(s):  
Beatriz Gargallo-Martinez ◽  
Amanda Ortiz-Gomariz ◽  
Ana Maria Gomez-Ramirez ◽  
Angel Ramon Gutiérrez-Ortega ◽  
Jose Javier Garcia-Medina

Abstract Fuchs endothelial dystrophy (FED) is a bilateral, asymmetric, progressive corneal endothelium disorder that causes corneal edema. Resolution of corneal edema is only possible by corneal transplantation. Cataract surgery is a common surgery that replaces the natural lens of the eye by an artificial intraocular lens (IOL). The IOL-power calculation depends mainly on the anterior corneal keratometry and the axial length. In patients with FED, anterior keratometry may be affected by corneal edema and calculations may be less accurate. Therefore, the aim of this study is to establish the theorical postoperative refractive error due to corneal edema resolution after Descemet stripping endothelial keratoplasty combined with cataract surgery and IOL implantation. For this, anterior keratometry was measure preoperatively with edematous cornea and postoperatively after corneal edema resolution. Both keratometries were compared and used to calculate the respective theorical IOL-powers. The difference between target IOLs was used to establish the theorical refractive error due to corneal edema resolution. The results showed that corneal edema resolution induces a change in anterior keratometry, which affects IOL-power calculations and causes a hyperopic shift. The patients with moderate-to-severe preoperative corneal edema had higher theorical refractive error so their target selection should be adjusted for additional − 0.50D.


Sign in / Sign up

Export Citation Format

Share Document