scholarly journals Azimuthal Correlations of D Mesons with Charged Particles in Simulations with the ALICE Experiment

Particles ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 512-520
Author(s):  
Eszter Frajna ◽  
Robert Vertesi

In this work, we present the results of a component-level analysis with Monte Carlo simulations, which aid the interpretation of recent ALICE results of the azimutal correlation distribution of prompt D mesons with charged hadrons in pp and p–Pb collisions at sNN = 5.02 TeV. Parton-level contributions and fragmentation properties are evaluated. Charm and beauty contributions are compared in order to identify the observables that serve as sensitive probes of the production and hadronisation of heavy quarks.

Proceedings ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 43
Author(s):  
Samrangy Sadhu

The azimuthal correlations between heavy-flavour hadrons or heavy-flavour decay electrons with charged particles in Pb-Pb collisions give insight on the modification of charm-jet properties in nucleus-nucleus collisions and the mechanisms through which heavy quarks in-medium energy-loss takes place. Studies in pp collisions, besides constituting the necessary baseline for nucleus-nucleus measurements, are important for testing expectations from pQCD-inspired Monte Carlo generators. In ALICE heavy-flavour hadrons are studied via their fully reconstructed hadronic decays (D mesons and Λ c baryon), via semileptonic decays of charmed baryons ( Λ c , Ξ c ) and via leptons coming from heavy-flavour hadron decays. In particular in the central barrel, η < | 0 . 8 | , the electrons from heavy-flavour hadron decays are investigated. This proceeding will include the study of azimuthal correlations of D mesons with charged particles in pp collisions and heavy-flavour decay electrons with charged particles in pp and Pb-Pb collisions at different energies available at the LHC. The Experimental results will also be compared with the expectations from POWHEG and PYTHIA event generators.


2020 ◽  
Vol 80 (10) ◽  
Author(s):  
S. Acharya ◽  
◽  
D. Adamová ◽  
A. Adler ◽  
J. Adolfsson ◽  
...  

AbstractThe measurement of the azimuthal-correlation function of prompt D mesons with charged particles in pp collisions at $$\sqrt{s} =5.02\ \hbox {TeV}$$ s = 5.02 TeV and p–Pb collisions at $$\sqrt{s_{\mathrm{NN}}} = 5.02\ \hbox {TeV}$$ s NN = 5.02 TeV with the ALICE detector at the LHC is reported. The $$\mathrm{D}^{0}$$ D 0 , $$\mathrm{D}^{+} $$ D + , and $$\mathrm{D}^{*+} $$ D ∗ + mesons, together with their charge conjugates, were reconstructed at midrapidity in the transverse momentum interval $$3< p_\mathrm{T} < 24\ \hbox {GeV}/c$$ 3 < p T < 24 GeV / c and correlated with charged particles having $$p_\mathrm{T} > 0.3\ \hbox {GeV}/c$$ p T > 0.3 GeV / c and pseudorapidity $$|\eta | < 0.8$$ | η | < 0.8 . The properties of the correlation peaks appearing in the near- and away-side regions (for $$\Delta \varphi \approx 0$$ Δ φ ≈ 0 and $$\Delta \varphi \approx \pi $$ Δ φ ≈ π , respectively) were extracted via a fit to the azimuthal correlation functions. The shape of the correlation functions and the near- and away-side peak features are found to be consistent in pp and p–Pb collisions, showing no modifications due to nuclear effects within uncertainties. The results are compared with predictions from Monte Carlo simulations performed with the PYTHIA, POWHEG+PYTHIA, HERWIG, and EPOS 3 event generators.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yao Li ◽  
Hai-Long Dong ◽  
Jin-Si Zhang ◽  
Cheng Lin ◽  
Zhi-Jie Tan

Salt ions play critical roles in the assembly of polyelectrolytes such as nucleic acids and colloids since ions can regulate the effective interactions between them. In this work, we investigated the effective interactions between oppositely charged particles in symmetrical (z:z) salt solutions by Monte Carlo simulations with salt valence z ranging from 1 to 4. We found that the effective interactions between oppositely charged particles are attractive for 1:1 and low multivalent salts, while they become apparently repulsive for high multivalent salts. Moreover, such effective repulsion becomes stronger as z increases from 2 to 3, while it becomes weaker when z increases from 3 to 4. Our analyses reveal that the overall effective interactions are attributed to the interplay between ion translational entropy and electrostatic energy, and the non-monotonic salt-valence dependence of the effective repulsions is caused by the rapid decrease of attractive electrostatic energy between two oppositely charged particles with their over-condensed counterions of opposite charges when z exceeds 3. Our further MC simulations show that the involvement of local-ranged counterion–co-ion repulsions can enhance the effective repulsions through weakening the attractive electrostatic energy, especially for higher salt valence.


Proceedings ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 20
Author(s):  
Marianna Mazzilli

Azimuthal correlation studies of heavy-flavour particles with charged particles in p–Pb collisions can give an insight into the cold nuclear matter effects on heavy-quark production and hadronization into heavy-flavour jets. Multiplicity-dependent measurements of angular correlations of heavy-flavour particles with charged hadrons allow us to investigate the collective behavior of the system and the initial state effects on heavy flavour hadron production. In addition, they can reveal possible modifications of the heavy-quark fragmentation and hadronization at different multiplicities. We present ALICE measurements of azimuthal correlations of prompt D-mesons with charged hadrons as a function of the multiplicity in p–Pb collisions at s NN = 5.02TeV. Moreover, the elliptic flow ( v 2 ) of heavy-flavour hadron decay electrons in high-multiplicity p–Pb collisions at s NN = 5.02 TeV, obtained using correlations with charged particles, is reported.


Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1389 ◽  
Author(s):  
Stanisław Jadach ◽  
Wiesław Płaczek ◽  
Maciej Skrzypek

In this note we present a new exponentiation scheme of soft photon radiation from charged quasi-stable resonances. It generalizes the well established scheme of Yennie, Frautschi and Suura. While keeping the same functional form of an exponent, the new scheme is both exact in its soft limit and accounts properly for the kinematical shift in resonant propagators. We present the scheme on an example of two processes: a toy model of single W production in e ν scattering and the W pair production and decay in e + e − annihilation. The latter process is of relevance for the planned FCCee collider where high precision of Monte Carlo simulations is a primary goal. The proposed scheme is a step in this direction.


Sign in / Sign up

Export Citation Format

Share Document