scholarly journals Detection of Anaplasma phagocytophilum, Babesia odocoilei, Babesia sp., Borrelia burgdorferi Sensu Lato, and Hepatozoon canis in Ixodes scapularis Ticks Collected in Eastern Canada

Pathogens ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1265
Author(s):  
John D. Scott ◽  
Risa R. Pesapane

Tick-borne pathogens cause infectious diseases that inflict much societal and financial hardship worldwide. Blacklegged ticks, Ixodes scapularis, are primary vectors of several epizootic and zoonotic pathogens. The aim sets forth the pathogens and their prevalence. In Ontario and Quebec, 113 I. scapularis ticks were collected from songbirds, mammals, including humans, and by flagging. PCR and DNA sequencing detected five different microorganisms: Anaplasma phagocytophilum, 1 (0.9%); Babesia odocoilei, 17 (15.3%); Babesia microti-like sp., 1 (0.9%); Borrelia burgdorferi sensu lato (Bbsl), 29 (26.1%); and Hepatozoon canis, 1 (0.9%). Five coinfections of Bbsl and Babesia odocoilei occurred. Notably, H. canis was documented for the first time in Canada and, at the same time, demonstrates the first transstadial passage of H. canis in I. scapularis. Transstadial passage of Bbsl and B. odocoilei was also witnessed. A novel undescribed piroplasm (Babesia microti-like) was detected. An established population of I. scapularis ticks was detected at Ste-Anne-de-Bellevue, Quebec. Because songbirds widely disperse I. scapularis larvae and nymphs, exposure in an endemic area is not required to contract tick-borne zoonoses. Based on the diversity of zoonotic pathogens in I. scapularis ticks, clinicians need to be aware that people who are bitten by I. scapularis ticks may require select antimicrobial regimens.

2008 ◽  
Vol 74 (6) ◽  
pp. 1780-1790 ◽  
Author(s):  
N. H. Ogden ◽  
L. R. Lindsay ◽  
K. Hanincová ◽  
I. K. Barker ◽  
M. Bigras-Poulin ◽  
...  

ABSTRACT During the spring in 2005 and 2006, 39,095 northward-migrating land birds were captured at 12 bird observatories in eastern Canada to investigate the role of migratory birds in northward range expansion of Lyme borreliosis, human granulocytic anaplasmosis, and their tick vector, Ixodes scapularis. The prevalence of birds carrying I. scapularis ticks (mostly nymphs) was 0.35% (95% confidence interval [CI] = 0.30 to 0.42), but a nested study by experienced observers suggested a more realistic infestation prevalence of 2.2% (95% CI = 1.18 to 3.73). The mean infestation intensity was 1.66 per bird. Overall, 15.4% of I. scapularis nymphs (95% CI = 10.7 to 20.9) were PCR positive for Borrelia burgdorferi, but only 8% (95% CI = 3.8 to 15.1) were positive when excluding nymphs collected at Long Point, Ontario, where B. burgdorferi is endemic. A wide range of ospC and rrs-rrl intergenic spacer alleles of B. burgdorferi were identified in infected ticks, including those associated with disseminated Lyme disease and alleles that are rare in the northeastern United States. Overall, 0.4% (95% CI = 0.03 to 0.41) of I. scapularis nymphs were PCR positive for Anaplasma phagocytophilum. We estimate that migratory birds disperse 50 million to 175 million I. scapularis ticks across Canada each spring, implicating migratory birds as possibly significant in I. scapularis range expansion in Canada. However, infrequent larvae and the low infection prevalence in ticks carried by the birds raise questions as to how B. burgdorferi and A. phagocytophilum become endemic in any tick populations established by bird-transported ticks.


Healthcare ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 46 ◽  
Author(s):  
John Scott ◽  
Kerry Clark ◽  
Lance Durden

Wild birds transport ticks into Canada that harbor a diversity of zoonotic pathogens. However, medical practitioners often question how these zoonotic pathogens are present in their locality. In this study, we provide the first report of an Amblyomma inornatum tick cofeeding with a blacklegged tick, Ixodes scapularis, which parasitized a Veery, Catharus fuscescens—a neotropical songbird. Using the flagellin (flaB) gene of the Lyme disease bacterium, Borrelia burgdorferi sensu lato, and the 18S rRNA gene of the Babesia piroplasm, a malaria-like microorganism, we detected Borrelia burgdorferi sensu stricto and Babesia odocoilei, respectively, in an I. scapularis nymph. After the molt, these ticks can bite humans. Furthermore, this is the first documentation of B. odocoilei in a tick parasitizing a bird. Our findings substantiate the fact that migratory songbirds transport neotropical ticks long distances, and import them into Canada during northward spring migration. Health care practitioners need to be aware that migratory songbirds transport pathogen-laden ticks into Canada annually, and pose an unforeseen health risk to Canadians.


2019 ◽  
Vol 119 (1) ◽  
pp. 299-315 ◽  
Author(s):  
Friederike Krämer ◽  
Ricarda Hüsken ◽  
Eva Maria Krüdewagen ◽  
Katrin Deuster ◽  
Byron Blagburn ◽  
...  

AbstractThe capability of imidacloprid 10% + flumethrin 4.5% (Seresto®) collars to prevent transmission of Borrelia burgdorferi sensu lato (Bbsl) and Anaplasma phagocytophilum (Ap) by naturally infected ticks was evaluated in two studies with 44 dogs. In each study, one group served as non-treated control, whereas the other groups were treated with the Seresto® collar. All dogs were exposed to naturally Bbsl- and Ap-infected hard ticks (Ixodes ricinus, Ixodes scapularis). In study 1, tick infestation was performed on study day (SD) 63 (2 months post-treatment [p.t.]); in study 2, it was performed on SD 32 (one month p.t.) respectively SD 219 (seven months p.t.). In situ tick counts were performed 2 days after infestation. Tick counts and removals followed 6 (study 1) or 5 days (study 2) later. Blood sampling was performed for the detection of specific Bbsl and Ap antibodies and, in study 1, for the documentation of Ap DNA by PCR. Skin biopsies were examined for Bbsl by PCR and culture (only study 1). The efficacy against Ixodes spp. was 100% at all time points. In study 1, two of six non-treated dogs became infected with Bbsl, and four of six tested positive for Ap; none of the treated dogs tested positive for Bbsl or Ap. In study 2, ten of ten non-treated dogs became infected with Bbsl and Ap; none of the treated dogs tested positive for Bbsl or Ap; 100% acaricidal efficacy was shown in both studies. Transmission of Bbsl and Ap was successfully blocked for up to 7 months.


Healthcare ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 131 ◽  
Author(s):  
John Scott ◽  
Kerry Clark ◽  
Janet Foley ◽  
John Anderson ◽  
Bradley Bierman ◽  
...  

Lyme disease, caused by the spirochetal bacterium, Borrelia burgdorferi sensu lato (Bbsl), is typically transmitted by hard-bodied ticks (Acari: Ixodidae). Whenever this tick-borne zoonosis is mentioned in medical clinics and emergency rooms, it sparks a firestorm of controversy. Denial often sets in, and healthcare practitioners dismiss the fact that this pathogenic spirochetosis is present in their area. For distribution of Bbsl across Canada, we conducted a 4-year, tick–host study (2013–2016), and collected ticks from avian and mammalian hosts from Atlantic Canada to the West Coast. Overall, 1265 ticks representing 27 tick species belonging to four genera were collected. Of the 18 tick species tested, 15 species (83%) were positive for Bbsl and, of these infected ticks, 6 species bite humans. Overall, 13 of 18 tick species tested are human-biting ticks. Our data suggest that a 6-tick, enzootic maintenance cycle of Bbsl is present in southwestern B.C., and five of these tick species bite humans. Biogeographically, the groundhog tick, Ixodes cookei, has extended its home range from central and eastern Canada to southwestern British Columbia (B.C.). We posit that the Fox Sparrow, Passerella iliaca, is a reservoir-competent host for Bbsl. The Bay-breasted Warbler, Setophaga castanea, and the Tennessee Warbler, Vermivora peregrina, are new host records for the blacklegged tick, Ixodes scapularis. We provide the first report of a Bbsl-positive Amblyomma longirostre larva parasitizing a bird; this bird parasitism suggests that a Willow Flycatcher is a competent reservoir of Bbsl. Our findings show that Bbsl is present in all provinces, and that multiple tick species are implicated in the enzootic maintenance cycle of this pathogen. Ultimately, Bbsl poses a serious public health contagion Canada-wide.


2021 ◽  
Vol 9 (2) ◽  
pp. 373
Author(s):  
Andreea Monica Bogdan ◽  
Mariana Ionita ◽  
Ioan Liviu Mitrea

The purpose of this study was to investigate the seroprevalence of selected tick-borne-pathogens (TBPs) among Romanian horses. For this, a total of 223 animals originating from north, central, and southeast Romania, including horses from stud farms (n = 118) and working horses (n = 105), were tested using a commercial rapid ELISA-based test. Overall, 10.3% (95% confidence interval (CI): 6.7–15.1%) of the tested horses were seropositive for antibodies (Ab) against Anaplasma phagocytophilum. Additionally, 18.8% (95% CI: 13.9–24.6%) and 0.5% (95% CI: 0.01–2.5%) of horses were seropositive for Ab against Borrelia burgdorferi sensu lato and Ehrlichia spp., respectively. Among the tested horses, 3.1% were seroreactive to two or three pathogens. These findings show the natural exposure of Romanian horses to zoonotic tick-borne pathogens and emphasize the need for further studies to better understand the epidemiology of equine tick-borne diseases in Romania.


Author(s):  
Matthew T Milholland ◽  
Lars Eisen ◽  
Robyn M Nadolny ◽  
Andrias Hojgaard ◽  
Erika T Machtinger ◽  
...  

Abstract Lyme and other tick-borne diseases are increasing in the eastern United States and there is a lack of research on integrated strategies to control tick vectors. Here we present results of a study on tick-borne pathogens detected from tick vectors and rodent reservoirs from an ongoing 5-yr tick suppression study in the Lyme disease-endemic state of Maryland, where human-biting tick species, including Ixodes scapularis Say (Acari: Ixodidae) (the primary vector of Lyme disease spirochetes), are abundant. During the 2017 tick season, we collected 207 questing ticks and 602 ticks recovered from 327 mice (Peromyscus spp. (Rodentia: Cricetidae)), together with blood and ear tissue from the mice, at seven suburban parks in Howard County. Ticks were selectively tested for the presence of the causative agents of Lyme disease (Borrelia burgdorferi sensu lato [s.l.]), anaplasmosis (Anaplasma phagocytophilum), babesiosis (Babesia microti), ehrlichiosis (Ehrlichia ewingii, Ehrlichia chaffeensis, and ‘Panola Mountain’ Ehrlichia) and spotted fever group rickettsiosis (Rickettsia spp.). Peromyscus ear tissue and blood samples were tested for Bo. burgdorferi sensu stricto (s.s), A. phagocytophilum, Ba. microti, and Borrelia miyamotoi. We found 13.6% (15/110) of questing I. scapularis nymphs to be Bo. burgdorferi s.l. positive and 1.8% (2/110) were A. phagocytophilum positive among all sites. Borrelia burgdorferi s.s. was found in 71.1% (54/76) of I. scapularis nymphs removed from mice and 58.8% (194/330) of captured mice. Results from study on tick abundance and pathogen infection status in questing ticks, rodent reservoirs, and ticks feeding on Peromyscus spp. will aid efficacy evaluation of the integrated tick management measures being implemented.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Mark P. Nelder ◽  
Curtis B. Russell ◽  
Antonia Dibernardo ◽  
Katie M. Clow ◽  
Steven Johnson ◽  
...  

Abstract Background The universal nature of the human–companion animal relationship and their shared ticks and tick-borne pathogens offers an opportunity for improving public and veterinary health surveillance. With this in mind, we describe the spatiotemporal trends for blacklegged tick (Ixodes scapularis) submissions from humans and companion animals in Ontario, along with pathogen prevalence. Methods We tested tick samples submitted through passive surveillance (2011–2017) from humans and companion animals for Borrelia burgdorferi, Borrelia miyamotoi, Anaplasma phagocytophilum and Babesia microti. We describe pathogen prevalence in ticks from humans and from companion animals and constructed univariable Poisson and negative binomial regression models to explore the spatiotemporal relationship between the rates of tick submissions by host type. Results During the study, there were 17,230 blacklegged tick samples submitted from humans and 4375 from companion animals. Tick submission rates from companion animals were higher than expected in several public health units (PHUs) lacking established tick populations, potentially indicating newly emerging populations. Pathogen prevalence in ticks was higher in PHUs where established blacklegged tick populations exist. Borrelia burgdorferi prevalence was higher in ticks collected from humans (maximum likelihood estimate, MLE = 17.5%; 95% confidence interval, CI 16.97–18.09%) than from companion animals (9.9%, 95% CI 9.15–10.78%). There was no difference in pathogen prevalence in ticks by host type for the remaining pathogens, which were found in less than 1% of tested ticks. The most common co-infection B. burgdorferi + B. miyamotoi occurred in 0.11% of blacklegged ticks from humans and animals combined. Borrelia burgdorferi prevalence was higher in unengorged (21.9%, 95% CI 21.12–22.65%) than engorged ticks (10.0%, 95% CI 9.45–10.56%). There were no consistent and significant spatiotemporal relationships detected via regression models between the annual rates of submission of each host type. Conclusions While B. burgdorferi has been present in blacklegged ticks in Ontario for several decades, other tick-borne pathogens are also present at low prevalence. Blacklegged tick and pathogen surveillance data can be used to monitor risk in human and companion animal populations, and efforts are under consideration to unite surveillance efforts for the different target populations. Graphic Abstract


Author(s):  
T E Zembsch ◽  
X Lee ◽  
G M Bron ◽  
L C Bartholomay ◽  
S M Paskewitz

Abstract Borrelia burgdorferi, the spirochete that causes Lyme disease, is endemic and widespread in Wisconsin. Research in the northeastern United States has revealed a positive association between Babesia microti, the main pathogen that causes babesiosis in humans, and Bo. burgdorferi in humans and in ticks. This study was conducted to examine associations between the disease agents in the Upper midwestern United States. Ixodes scapularis Say nymphs (N = 2,858) collected between 2015 and 2017 from nine locations in Wisconsin were tested for Babesia spp. and Borrelia spp. using real-time PCR. Two species of Babesia were detected; Ba. microti and Babesia odocoilei (a parasite of members of the family Cervidae). Prevalence of infection at the nine locations ranged from 0 to 13% for Ba. microti, 11 to 31% for Bo. burgdorferi sensu stricto, and 5.7 to 26% for Ba. odocoilei. Coinfection of nymphs with Bo. burgdorferi and Ba. odocoilei was detected in eight of the nine locations and significant positive associations were observed in two of the eight locations. The prevalence of nymphal coinfection with both and Bo. burgdorferi and Ba. microti ranged from 0.81 to 6.5%. These two pathogens were significantly positively associated in one of the five locations where both pathogens were detected. In the other four locations, the observed prevalence of coinfection was higher than expected in all but one site-year. Clinics and healthcare providers should be aware of the association between Ba. microti and Bo. burgdorferi pathogens when treating patients who report tick bites.


Sign in / Sign up

Export Citation Format

Share Document