scholarly journals “Shining a LAMP” (Loop-Mediated Isothermal Amplification) on the Molecular Detection of Phytopathogens Phytophthora spp. and Phytophthora cactorum in Strawberry Fields

Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1453
Author(s):  
Dominika G. Siegieda ◽  
Jacek Panek ◽  
Magdalena Frąc

Phytopathogenic microorganisms belonging to the genus Phytophthora have been recognized many times as causal agents of diseases that lower the yield of many plants important for agriculture. Meanwhile, Phytophthora cactorum causes crown rot and leather rot of berry fruits, mainly strawberries. However, widely-applied culture-based methods used for the detection of pathogens are time-consuming and often inaccurate. What is more, molecular techniques require costly equipment. Here we show a rapid and effective detection method for the aforementioned targets, deploying a simple molecular biology technique, Loop-Mediated Isothermal Amplification (LAMP). We optimized assays to amplify the translation elongation factor 1-α (EF1a) gene for two targets: Phytophthora spp. And Phytophthora cactorum. We optimized the LAMP on pure strains of the pathogens, isolated from organic plantations of strawberry, and successfully validated the assay on biological material from the environment including soil samples, rhizosphere, shoots and roots of strawberry, and with SYBR Green. Our results demonstrate that a simple and reliable molecular detection method, that requires only a thermoblock and simple DNA isolation kit, can be successfully applied to detect pathogens that are difficult to separate from the field. We anticipate our findings to be a starting point for developing easier and faster modifications of the isothermal detection methods and which can be applied directly in the plantation, in particular with the use of freeze-dried reagents and chemistry, allowing observation of the results with the naked eye.

Foods ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 423 ◽  
Author(s):  
Stefanie M. Allgöwer ◽  
Chris A. Hartmann ◽  
Thomas Holzhauser

The soybean (Glycine max) has been recognized as a frequent elicitor of food allergy worldwide. A lack of causative immunotherapy of soybean allergy makes soybean avoidance essential. Therefore, sensitive and specific methods for soybean detection are needed to allow for soybean verification in foods. Loop-mediated isothermal amplification (LAMP) represents a rapid and simple DNA-based detection method principally suitable for field-like applications or on-site analytical screening for allergens during the manufacturing of foods. This work describes the systematic development and selection of suitable LAMP primers based on soybean multicopy genes. The chemistry applied allows for a versatile detection of amplified DNA, using either gel electrophoresis, fluorescence recording, or a simple Lateral Flow Dipstick (LFD). LAMP based on the ORF160b gene was highly specific for the soybean and may allow for a detection level equivalent to approximately 10 mg soy per kg food. Various soybean cultivars were detectable at a comparable level of sensitivity. LAMP combined with LFD-like detection facilitates a simple, highly specific and sensitive detection of the soybean without the need for expensive analytical equipment. In contrast to the majority of antibody-based methods for soybean detection, all identified primer sequences and optimized protocols are disclosed and broadly available to the community.


Sign in / Sign up

Export Citation Format

Share Document