scholarly journals Model-Informed Optimization of a Pediatric Clinical Pharmacokinetic Trial of a New Spironolactone Liquid Formulation

Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 849
Author(s):  
Manasa Tatipalli ◽  
Vijay Kumar Siripuram ◽  
Tao Long ◽  
Diana Shuster ◽  
Galina Bernstein ◽  
...  

Quantitative pharmacology brings important advantages in the design and conduct of pediatric clinical trials. Herein, we demonstrate the application of a model-based approach to select doses and pharmacokinetic sampling scenarios for the clinical evaluation of a novel oral suspension of spironolactone in pediatric patients with edema. A population pharmacokinetic model was developed and qualified for spironolactone and its metabolite, canrenone, using data from adults and bridged to pediatrics (2 to <17 years old) using allometric scaling. The model was then used via simulation to explore different dosing and sampling scenarios. Doses of 0.5 and 1.5 mg/kg led to target exposures (i.e., similar to 25 and 100 mg of the reference product in adults) in all the reference pediatric ages (i.e., 2, 6, 12 and 17 years). Additionally, two different sampling scenarios were delineated to accommodate patients into sparse sampling schemes informative to characterize drug pharmacokinetics while minimizing phlebotomy and burden to participating children.

2019 ◽  
Vol 63 (4) ◽  
Author(s):  
Si-Chan Li ◽  
Qi Ye ◽  
Hua Xu ◽  
Long Zhang ◽  
Yang Wang

ABSTRACT Linezolid is a synthetic antibiotic very effective in the treatment of infections caused by Gram-positive pathogens. Although the clinical application of linezolid in children has increased progressively, data on linezolid pharmacokinetics in pediatric patients are very limited. The aim of this study was to develop a population pharmacokinetic model for linezolid in children and optimize the dosing strategy in order to improve therapeutic efficacy. We performed a prospective pharmacokinetic study of pediatric patients aged 0 to 12 years. The population pharmacokinetic model was developed using the NONMEM program. Goodness-of-fit plots, nonparametric bootstrap analysis, normalized prediction distribution errors, and a visual predictive check were employed to evaluate the final model. The dosing regimen was optimized based on the final model. The pharmacokinetic data from 112 pediatric patients ages 0.03 to 11.9 years were analyzed. The pharmacokinetics could best be described by a one-compartment model with first-order elimination along with body weight and the estimated glomerular filtration rate as significant covariates. Simulations demonstrated that the currently approved dosage of 10 mg/kg of body weight every 8 h (q8h) would lead to a high risk of underdosing for children in the presence of bacteria with MICs of ≥2 mg/liter. To reach the pharmacokinetic target, an elevated dosage of 15 or 20 mg/kg q8h may be required for them. The population pharmacokinetics of linezolid were characterized in pediatric patients, and simulations provide an evidence-based approach for linezolid dosage individualization.


2006 ◽  
Vol 50 (3) ◽  
pp. 935-942 ◽  
Author(s):  
Ying Hong ◽  
Peter J. Shaw ◽  
Christa E. Nath ◽  
Satya P. Yadav ◽  
Katherine R. Stephen ◽  
...  

ABSTRACT A population pharmacokinetic model of liposomal amphotericin B (L-AmB) in pediatric patients with malignant diseases was developed and evaluated. Blood samples were collected from 39 pediatric oncology patients who received multiple doses of L-AmB with a dose range from 0.8 to 5.9 mg/kg of body weight/day. The patient cohort had an average age of 7 years (range, 0.2 to 17 years) and weighed an average of 28.8 ± 19.8 kg. Population pharmacokinetic analyses were performed with NONMEM software. Pharmacokinetic parameters, interindividual variability (IIV), between-occasion variability (BOV), and intraindividual variability were estimated. The influence of patient characteristics on the pharmacokinetics of L-AmB was explored. The final population pharmacokinetic model was evaluated by using a bootstrap sampling technique. The L-AmB plasma concentration-time data was described by a two-compartment pharmacokinetic model with zero-order input and first-order elimination. The population mean estimates of clearance (CL) and volume of distribution in the central compartment (V 1) were 0.44 liters/h and 3.12 liters, respectively, and exhibited IIV (CL, 10%) and significant BOV (CL, 46% and V 1, 56%). The covariate models were CL (liters/h) = 0.44 · e 0.0152 · (WT − 21 ) and V 1 (liters) = 3.12 · e 0.0241  ·  (WT  −  21), where WT is the patient's body weight (kg) centered on the study population cohort median of 21 kg. Model evaluation by the bootstrap procedure indicated that the full pharmacokinetic model was robust and parameter estimates were accurate. In conclusion, the pharmacokinetics of L-AmB in pediatric oncology patients were adequately described by the developed population model. The model has been evaluated and can be used in the design of rational dosing strategies for L-AmB antifungal therapy in this special population.


2018 ◽  
Vol 62 (9) ◽  
Author(s):  
Shufan Ge ◽  
Ryan J. Beechinor ◽  
Christoph P. Hornik ◽  
Joseph F. Standing ◽  
Kanecia Zimmerman ◽  
...  

ABSTRACTGentamicin is a common antibiotic used in neonates and infants. A recently published population pharmacokinetic (PK) model was developed using data from multiple studies, and the objective of our analyses was to evaluate the feasibility of using a national electronic health record (EHR) database for further external evaluation of this model. Our results suggest that, with proper data capture procedures, EHR data can serve as a potential data source for external evaluation of PK models.


2013 ◽  
Vol 57 (12) ◽  
pp. 5889-5900 ◽  
Author(s):  
Carrie A. Morris ◽  
Beesan Tan ◽  
Stephan Duparc ◽  
Isabelle Borghini-Fuhrer ◽  
Donald Jung ◽  
...  

ABSTRACTDespite the important role of the antimalarial artesunate and its active metabolite dihydroartemisinin (DHA) in malaria treatment efforts, there are limited data on the pharmacokinetics of these agents in pediatric patients. This study evaluated the effects of body size and gender on the pharmacokinetics of artesunate-DHA using data from pediatric and adult malaria patients. Nonlinear mixed-effects modeling was used to obtain a base model consisting of first-order artesunate absorption and one-compartment models for artesunate and for DHA. Various methods of incorporating effects of body size descriptors on clearance and volume parameters were tested. An allometric scaling model for weight and a linear body surface area (BSA) model were deemed optimal. The apparent clearance and volume of distribution of DHA obtained with the allometric scaling model, normalized to a 38-kg patient, were 63.5 liters/h and 65.1 liters, respectively. Estimates for the linear BSA model were similar. The 95% confidence intervals for the estimated gender effects on clearance and volume parameters for artesunate fell outside the predefined no-relevant-clinical-effect interval of 0.75 to 1.25. However, the effect of gender on apparent DHA clearance was almost entirely contained within this interval, suggesting a lack of an influence of gender on this parameter. Overall, the pharmacokinetics of artesunate and DHA following oral artesunate administration can be described for pediatric patients using either an allometric scaling or linear BSA model. Both models predict that, for a given artesunate dose in mg/kg of body weight, younger children are expected to have lower DHA exposure than older children or adults.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiao Chen ◽  
Dongdong Wang ◽  
Guangfei Wang ◽  
Yidie Huang ◽  
Xin Yu ◽  
...  

Sirolimus is an effective oral treatment for pediatric patients with lymphangioma. The present clinical study in 15 children (0.12–16.39 years of age) examines the effects of underlying factors on sirolimus concentrations through application of a population pharmacokinetic model. Using Monte Carlo simulation, an initial dose regimen for sirolimus in pediatric patients with lymphangioma is presented. It is found that the lower the body weight, the higher the clearance rate and sirolimus clearances are 0.31–0.17 L/h/kg in pediatric patients with lymphangioma whose weights are 5–60 kg, respectively. The doses of sirolimus, 0.07, 0.06, 0.05 mg/kg/day are recommended for weights of 5–10, 10–24.5 and 24.5–60 kg in children with lymphangioma. This study is the first to establish a population pharmacokinetic model for sirolimus and to recommend initial doses in pediatric patients with lymphangioma. Large scale, prospective studies are needed in the future.


Sign in / Sign up

Export Citation Format

Share Document