scholarly journals The Effects of a Short Self-Assembling Peptide on the Physical and Biological Properties of Biopolymer Hydrogels

Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1602
Author(s):  
Sumit Chowdhuri ◽  
Moumita Ghosh ◽  
Lihi Adler-Abramovich ◽  
Debapratim Das

Hydrogel scaffolds have attracted much interest in the last few years for applications in the field of bone and cartilage tissue engineering. These scaffolds serve as a convenient three-dimensional structure on which cells can grow while sensing the native environment. Natural polymer-based hydrogels are an interesting choice for such purposes, but they lack the required mechanical properties. In contrast, composite hydrogels formed by biopolymers and short peptide hydrogelators possess mechanical characteristics suitable for osteogenesis. Here, we describe how combining the short peptide hydrogelator, Pyrene-Lysine-Cysteine (PyKC), with other biopolymers, can produce materials that are suitable for tissue engineering purposes. The presence of PyKC considerably enhances the strength and water content of the composite hydrogels, and confers thixotropic behavior. The hyaluronic acid-PyKC composite hydrogels were shown to be biocompatible, with the ability to support osteogenesis, since MC3 T3-E1 osteoblast progenitor cells grown on the materials displayed matrix calcification and osteogenic differentiation. The osteogenesis results and the injectability of these composite hydrogels hold promise for their future utilization in tissue engineering.

2019 ◽  
Vol 11 (40) ◽  
pp. 36359-36370 ◽  
Author(s):  
Yaqiang Li ◽  
Yanqun Liu ◽  
Xiaowei Xun ◽  
Wei Zhang ◽  
Yong Xu ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2913 ◽  
Author(s):  
Abdul Razzaq Farooqi ◽  
Julius Zimmermann ◽  
Rainer Bader ◽  
Ursula van Rienen

The intrinsic regeneration potential of hyaline cartilage is highly limited due to the absence of blood vessels, lymphatics, and nerves, as well as a low cell turnover within the tissue. Despite various advancements in the field of regenerative medicine, it remains a challenge to remedy articular cartilage defects resulting from trauma, aging, or osteoarthritis. Among various approaches, tissue engineering using tailored electroactive scaffolds has evolved as a promising strategy to repair damaged cartilage tissue. In this approach, hydrogel scaffolds are used as artificial extracellular matrices, and electric stimulation is applied to facilitate proliferation, differentiation, and cell growth at the defect site. In this regard, we present a simulation model of electroactive hydrogels to be used for cartilage–tissue engineering employing open-source finite-element software FEniCS together with a Python interface. The proposed mathematical formulation was first validated with an example from the literature. Then, we computed the effect of electric stimulation on a circular hydrogel sample that served as a model for a cartilage-repair implant.


2016 ◽  
Vol 4 (20) ◽  
pp. 3562-3574 ◽  
Author(s):  
E. A. Aisenbrey ◽  
S. J. Bryant

Three dimensional hydrogels are a promising vehicle for delivery of adult human bone-marrow derived mesenchymal stem cells (hMSCs) for cartilage tissue engineering.


Author(s):  
Hui Wang ◽  
Zhonghan Wang ◽  
He Liu ◽  
Jiaqi Liu ◽  
Ronghang Li ◽  
...  

Although there have been remarkable advances in cartilage tissue engineering, construction of irregularly shaped cartilage, including auricular, nasal, tracheal, and meniscus cartilages, remains challenging because of the difficulty in reproducing its precise structure and specific function. Among the advanced fabrication methods, three-dimensional (3D) printing technology offers great potential for achieving shape imitation and bionic performance in cartilage tissue engineering. This review discusses requirements for 3D printing of various irregularly shaped cartilage tissues, as well as selection of appropriate printing materials and seed cells. Current advances in 3D printing of irregularly shaped cartilage are also highlighted. Finally, developments in various types of cartilage tissue are described. This review is intended to provide guidance for future research in tissue engineering of irregularly shaped cartilage.


2018 ◽  
Vol 83 ◽  
pp. 195-201 ◽  
Author(s):  
Xingchen Yang ◽  
Zhenhui Lu ◽  
Huayu Wu ◽  
Wei Li ◽  
Li Zheng ◽  
...  

2011 ◽  
Vol 17 (11-12) ◽  
pp. 1549-1560 ◽  
Author(s):  
Shan-hui Hsu ◽  
Tsung-Bin Huang ◽  
Shun-Jung Cheng ◽  
Su-Ying Weng ◽  
Ching-Lin Tsai ◽  
...  

Biomaterials ◽  
2005 ◽  
Vol 26 (6) ◽  
pp. 599-609 ◽  
Author(s):  
Wan-Ju Li ◽  
Richard Tuli ◽  
Chukwuka Okafor ◽  
Assia Derfoul ◽  
Keith G Danielson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document