scholarly journals A Super-Fast Free-Electron Laser Simulation Code for Online Optimization

Photonics ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 117
Author(s):  
Li Zeng ◽  
Chao Feng ◽  
Xiaofan Wang ◽  
Kaiqing Zhang ◽  
Zheng Qi ◽  
...  

The X-ray free-electron lasers (FELs) have stimulated the growing interest of researchers in different fields. This gives rise to an increasing simulation work of design and optimization of FEL facilities and demonstrations of novel FEL ideas. Most of the multi-dimensional simulation codes in use require large computational resources, while one-dimensional simulation codes can merely give an acceptable description of the FEL amplification process. This paper presents the development of a super-fast time-dependent FEL simulation code, which is mainly designed for seeded FEL and its application on a seed FEL facility. The diffraction factors have been introduced in order to model the effects of radiation field diffraction and drastically simplified the working equations. Meanwhile, a specially designed module for seeded FEL has been added in order to study the laser-electron beam interactions with arbitrarily parameters. The code can also provide a fairly accurate, quasi-real-time assistant tool for online optimization.

2007 ◽  
Vol 22 (22) ◽  
pp. 3826-3837 ◽  
Author(s):  
Z. HUANG ◽  
G. STUPAKOV ◽  
S. REICHE

Various methods have been proposed to condition an electron beam in order to reduce its emittance effect and to improve the short-wavelength free electron laser (FEL) performance. In this paper, we show that beam conditioning does not result in a complete elimination of the emittance effect in an alternating-gradient focusing FEL undulator. Using a one-dimensional model and a three-dimensional simulation code, we derive a criteria for the emittance limitation of a perfectly conditioned beam that depends on the focusing structure.


2004 ◽  
pp. 387-391
Author(s):  
A. Mizuno ◽  
T. Asaka ◽  
H. Dewa ◽  
T. Kobayashi ◽  
S. Suzuki ◽  
...  

2010 ◽  
Vol 28 (2) ◽  
pp. 327-337 ◽  
Author(s):  
J. Krall ◽  
J. D. Huba ◽  
G. Joyce ◽  
T. Yokoyama

Abstract. Forces governing the three-dimensional structure of equatorial spread-F (ESF) plumes are examined using the NRL SAMI3/ESF three-dimensional simulation code. As is the case with the equatorial ionization anomaly (IA), density crests within the plume occur where gravitational and diffusive forces are in balance. Large E×B drifts within the ESF plume place these crests on field lines with apex heights higher than those of the background IA crests. Large poleward field-aligned ion velocities within the plume result in large ion-neutral diffusive forces that support these ionization crests at altitudes higher than background IA crest altitudes. We show examples in which density enhancements associated with ESF, also called "plasma blobs," can occur within an ESF plume on density-crest field lines, at or above the density crests. Simulated ESF density enhancements reproduce all key features of those that have been observed in situ.


Sign in / Sign up

Export Citation Format

Share Document