scholarly journals Magnetic Force-Free Theory: Nonlinear Case

Physics ◽  
2022 ◽  
Vol 4 (1) ◽  
pp. 21-36
Author(s):  
Brunello Tirozzi ◽  
Paolo Buratti

In this paper, a theory of force-free magnetic field useful for explaining the formation of convex closed sets, bounded by a magnetic separatrix in the plasma, is developed. This question is not new and has been addressed by many authors. Force-free magnetic fields appear in many laboratory and astrophysical plasmas. These fields are defined by the solution of the problem ∇×B=ΛB with some field conditions B∂Ω on the boundary ∂Ω of the plasma region. In many physical situations, it has been noticed that Λ is not constant but may vary in the domain Ω giving rise to many different interesting physical situations. We set Λ=Λ(ψ) with ψ being the poloidal magnetic flux function. Then, an analytic method, based on a first-order expansion of ψ with respect to a small parameter α, is developed. The Grad–Shafranov equation for ψ is solved by expanding the solution in the eigenfunctions of the zero-order operator. An analytic expression for the solution is obtained deriving results on the transition through resonances, the amplification with respect to the gun inflow. Thus, the formation of Spheromaks or Protosphera structure of the plasma is determined in the case of nonconstant Λ.

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Aleix Gimenez-Grau ◽  
Pedro Liendo ◽  
Philine van Vliet

Abstract Boundaries in three-dimensional $$ \mathcal{N} $$ N = 2 superconformal theories may preserve one half of the original bulk supersymmetry. There are two possibilities which are characterized by the chirality of the leftover supercharges. Depending on the choice, the remaining 2d boundary algebra exhibits $$ \mathcal{N} $$ N = (0, 2) or $$ \mathcal{N} $$ N = (1) supersymmetry. In this work we focus on correlation functions of chiral fields for both types of supersymmetric boundaries. We study a host of correlators using superspace techniques and calculate superconformal blocks for two- and three-point functions. For $$ \mathcal{N} $$ N = (1) supersymmetry, some of our results can be analytically continued in the spacetime dimension while keeping the codimension fixed. This opens the door for a bootstrap analysis of the ϵ-expansion in supersymmetric BCFTs. Armed with our analytically-continued superblocks, we prove that in the free theory limit two-point functions of chiral (and antichiral) fields are unique. The first order correction, which already describes interactions, is universal up to two free parameters. As a check of our analysis, we study the Wess-Zumino model with a super-symmetric boundary using Feynman diagrams, and find perfect agreement between the perturbative and bootstrap results.


1995 ◽  
Vol 06 (03) ◽  
pp. 203-234 ◽  
Author(s):  
YUKIYOSHI KAMEYAMA

This paper studies an extension of inductive definitions in the context of a type-free theory. It is a kind of simultaneous inductive definition of two predicates where the defining formulas are monotone with respect to the first predicate, but not monotone with respect to the second predicate. We call this inductive definition half-monotone in analogy of Allen’s term half-positive. We can regard this definition as a variant of monotone inductive definitions by introducing a refined order between tuples of predicates. We give a general theory for half-monotone inductive definitions in a type-free first-order logic. We then give a realizability interpretation to our theory, and prove its soundness by extending Tatsuta’s technique. The mechanism of half-monotone inductive definitions is shown to be useful in interpreting many theories, including the Logical Theory of Constructions, and Martin-Löf’s Type Theory. We can also formalize the provability relation “a term p is a proof of a proposition P” naturally. As an application of this formalization, several techniques of program/proof-improvement can be formalized in our theory, and we can make use of this fact to develop programs in the paradigm of Constructive Programming. A characteristic point of our approach is that we can extract an optimization program since our theory enjoys the program extraction theorem.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Martin Beneke ◽  
Philipp Böer ◽  
Jan-Niklas Toelstede ◽  
K. Keri Vos

Abstract We discuss the generalization of the leading-twist light-cone distribution amplitude for light mesons including QED effects. This generalization was introduced to describe virtual collinear photon exchanges at the strong-interaction scale ΛQCD in the factorization of QED effects in non-leptonic B-meson decays. In this paper we study the renormalization group evolution of this non-perturbative function. For charged mesons, in particular, this exhibits qualitative differences with respect to the well-known scale evolution in QCD only, especially regarding the endpoint-behaviour. We analytically solve the evolution equation to first order in the electromagnetic coupling αem, which resums large logarithms in QCD on top of a fixed-order expansion in αem. We further provide numerical estimates for QED corrections to Gegenbauer coefficients as well as inverse moments relevant to (QED-generalized) factorization theorems for hard exclusive processes.


1970 ◽  
Vol 17 (2) ◽  
pp. 181-186 ◽  
Author(s):  
D. Desbrow

In this paper we study closed sets having a neighbourhood with compact closure which are positively asymptotically stable under a flow on a metric space X. For an understanding of this and the rest of the introduction it is sufficient for the reader to have in mind as an example of a flow a system of first order, autonomous ordinary differential equations describing mathematically a time-independent physical system; in short a dynamical system. In a flow a set M is positively stable if the trajectories through all points sufficiently close to M remain in the future in a given neighbourhood of M. The set M is positively asymptotically stable if it is positively stable and, in addition, trajectories through all points of some neighbourhood of M approach M in the future.


2003 ◽  
Vol 18 (15) ◽  
pp. 1023-1035 ◽  
Author(s):  
ICHIRO ODA

On the basis of the Berkovits pure spinor formalism of covariant quantization of supermembrane, we attempt to construct a M(atrix) theory which is covariant under SO(1, 10) Lorentz group. We first construct a bosonic M(atrix) theory by starting with the first-order formalism of bosonic membrane, which precisely gives us a bosonic sector of M(atrix) theory by BFSS. Next we generalize this method to the construction of M(atrix) theory of supermembranes. However, it seems to be difficult to obtain a covariant and supersymmetric M(atrix) theory from the Berkovits pure spinor formalism of supermembrane because of the matrix character of the BRST symmetry. Instead, in this paper, we construct a supersymmetric and covariant matrix model of 11D superparticle, which corresponds to a particle limit of covariant M(atrix) theory. By an explicit calculation, we show that the one-loop effective potential is trivial, thereby implying that this matrix model is a free theory at least at the one-loop level.


Author(s):  
Venkatanarayanan Ramakrishnan ◽  
Brian F. Feeny

The present study deals with the response of a forced nonlinear Mathieu equation. The equation considered has parametric excitation at the same frequency as direct forcing and also has cubic nonlinearity and damping. A second-order perturbation analysis using the method of multiple scales unfolds numerous resonance cases and system behavior that were not uncovered using first-order expansions. All resonance cases are analyzed. We numerically plot the frequency response of the system. The existence of a superharmonic resonance at one third the natural frequency was uncovered analytically for linear system. (This had been seen previously in numerical simulations but was not captured in the first-order expansion.) The effect of different parameters on the response of the system previously investigated are revisited.


2003 ◽  
Vol 1852 (1) ◽  
pp. 209-219 ◽  
Author(s):  
Stéphane Chanut ◽  
Christine Buisson

A new first-order traffic flow model is introduced that takes into account the fact that various types of vehicles use the roads simultaneously, particularly cars and trucks. The main improvement this model has to offer is that vehicles are differentiated not only by their lengths but also by their speeds in a free-flow regime. Indeed, trucks on European roads are characterized by a lower speed than that of cars. A system of hyperbolic conservation equations is defined. In this system the flux function giving the flow of heavy and light vehicles depends on total and partial densities. This problem is partly solved in the Riemann case in order to establish a Godunov discretization. Some model output is shown stressing that speed differences between the two types of vehicles and congestion propagation are sufficiently reproduced. The limits of the proposed model are highlighted, and potential avenues of research in this domain are suggested.


Sign in / Sign up

Export Citation Format

Share Document