scholarly journals Wheat, Rye, and Barley Genomes Can Associate during Meiosis in Newly Synthesized Trigeneric Hybrids

Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 113
Author(s):  
María-Dolores Rey ◽  
Carmen Ramírez ◽  
Azahara C. Martín

Polyploidization, or whole genome duplication (WGD), has an important role in evolution and speciation. One of the biggest challenges faced by a new polyploid is meiosis, in particular, discriminating between multiple related chromosomes so that only homologs recombine to ensure regular chromosome segregation and fertility. Here, we report the production of two new hybrids formed by the genomes of species from three different genera: a hybrid between Aegilops tauschii (DD), Hordeum chilense (HchHch), and Secale cereale (RR) with the haploid genomic constitution HchDR (n = 7× = 21); and a hybrid between Triticum turgidum spp. durum (AABB), H. chilense, and S. cereale with the constitution ABHchR (n = 7× = 28). We used genomic in situ hybridization and immunolocalization of key meiotic proteins to establish the chromosome composition of the new hybrids and to study their meiotic behavior. Interestingly, there were multiple chromosome associations at metaphase I in both hybrids. A high level of crossover (CO) formation was observed in HchDR, which shows the possibility of meiotic recombination between the different genomes. We succeeded in the duplication of the ABHchR genome, and several amphiploids, AABBHchHchRR, were obtained and characterized. These results indicate that recombination between the genera of three economically important crops is possible.

Genome ◽  
2004 ◽  
Vol 47 (1) ◽  
pp. 206-214 ◽  
Author(s):  
Khwaja G Hossain ◽  
Oscar Riera-Lizarazu ◽  
Venugopal Kalavacharla ◽  
M Isabel Vales ◽  
Jamie L Rust ◽  
...  

Triticum aestivum (2n = 6x = 42, AABBDD) with Triticum longissimum (2n = 2x = 14; S1S1) cytoplasm ((lo) cytoplasm) has normal fertility and plant vigor. However, the nucleus of durum wheat (Triticum turgidum (2n = 4x = 28, AABB)) is incompatible with the T. longissimum cytoplasm, producing non-viable progeny. This incompatibility is alleviated by scsae, a species cytoplasm-specific (scs) gene, on the long arm of chromosome 1D (1DL) of common wheat. The hemizygous (lo) durum scsae line is male sterile and is maintained by crossing to normal durum wheat. After pollination, the seeds produced are either plump and viable (with scsae) or shriveled and inviable (without scsae). Thus, the chromosome with scsae is inherited as a whole without recombination. The objectives of this study were to characterize the chromosome carrying scsae and to determine the process through which this gene was introgressed into the (lo) durum background. Molecular marker analysis with 27 probes and primers mapped to homoeologous group 1 and genomic in situ hybridization using differentially labeled total genomic DNA of durum wheat and Aegilops tauschii suggest the presence of a 1AL segment in place of the distal region of 1DL. Owing to the absence of any detectable duplications or deletions, homoeologous recombination is the most likely mechanism by which this introgression occurred.Key words: homoeologous recombination, in situ hybridization, nuclear-cytoplasmic interaction, species cytoplasm specific gene


Genome ◽  
2003 ◽  
Vol 46 (1) ◽  
pp. 164-169 ◽  
Author(s):  
Pernilla Ellneskog-Staam ◽  
Björn Salomon ◽  
Roland von Bothmer ◽  
Kesara Anamthawat-Jónsson

The genomic constitution of two species in the genus Psammopyrum, i.e., Ps. athericum (2n = 6x = 42) and Ps. pungens (2n = 8x = 56), was studied by genomic in situ hybridization (GISH). In Ps. athericum, one diploid chromosome set hybridized to a genomic probe from Pseudoroegneria ferganensis (St genome), one diploid set to a probe from Agropyron cristatum (P genome), and one diploid set to a probe from Thinopyrum junceiforme (EbEe genomes) or Th. bessarabicum (Eb genome). Substituting the St-genome probe with an L-genome probe from Festucopsis serpentinii resulted in exactly the same hybridization pattern, suggesting a genomic constitution of EStP or ELP for Ps. athericum. The same probes used on Ps. pungens showed two diploid sets of chromosomes hybridizing to the St-genome probe, one diploid set hybridizing to the P-genome probe, and one diploid set hybridizing to the EbEe-genome probe. The L-genome probe hybridized to approximately 14 of the chromosomes that were labeled by the St-genome probe. Hence the genomic constitution for Ps. pungens is proposed to be EStStP or EStLP.Key Words: Psammopyrum athericum, Psammopyrum pungens, in situ hybridization, Elytrigia pycnantha, Elytrigia pungens, genome analysis.


Genome ◽  
2000 ◽  
Vol 43 (2) ◽  
pp. 398-403 ◽  
Author(s):  
Mingshu Cao ◽  
David A Sleper ◽  
Fenggao Dong ◽  
Jiming Jiang

Intergeneric hybridizations have been made between species of Lolium and Festuca. It has been demonstrated, largely through conventional cytogenetic analysis, that the genomes of the two genera are related, however, much information is lacking on exactly how closely related the genomes are between the two species. We applied genomic in situ hybridization (GISH) techniques to the F1 hybrids of tetraploid Festuca mairei with a genomic constitution of M1M1M2M2 and diploid Lolium perenne with a genomic constitution of LL. It was shown in the triploid hybrids (LM1M2) that the chromosomes of M1 and M2 from F. mairei could pair with each other, and it was further discovered that L chromosomes of L. perenne paired with M1 and M2 chromosomes. Our results showed that meiocytes of Lolium-Festuca are amenable to GISH analysis, and provided direct evidence for the hypothesis that the chromosomes of Lolium and Festuca may be genetically equivalent and that reciprocal mixing of the genomes may be possible. Key words: Lolium, Festuca, in situ hybridization, meiosis.


Genome ◽  
2014 ◽  
Vol 57 (2) ◽  
pp. 89-95 ◽  
Author(s):  
Hao Li ◽  
Changyou Wang ◽  
Shulan Fu ◽  
Xiang Guo ◽  
Baoju Yang ◽  
...  

As an important group in Triticum, tetraploid wheat plays a significant role in the research of wheat evolution. Several complete aneuploid sets of common wheat have provided valuable tools for genetic and breeding studies, while similar aneuploids of tetraploid wheat are still not well developed. Here, 12 double ditelosomics developed in Triticum turgidum L. var. durum cultivar DR147 (excluding dDT2B and dDT3A) were reported. Hybrids between DR147 and the original double-ditelosomic dDT2B of Langdon lost vigor and died prematurely after the three-leaf stage; therefore, the dDT2B line was not obtained. The cytogenetic behaviors and phenotypic characteristics of each line were detailedly described. To distinguish the entire chromosome complement of tetraploid wheat, the DR147 karyotype was established by fluorescence in situ hybridization (FISH), using the Aegilops tauschii clone pAsl and the barley clone pHvG38 as probes. FISH using a cereal-specific centromere repeat (6C6) probe suggested that all the lines possessed four telosomes, except for 4AS of double-ditelosomic dDT4A, which carried a small segment of the long arm. On the basis of the idiogram of DR147, these lines were successfully discriminated by FISH using the probes pAsl and pHvG38 and were then accurately designated.


Genome ◽  
2000 ◽  
Vol 43 (4) ◽  
pp. 712-719 ◽  
Author(s):  
George Fedak ◽  
Qin Chen ◽  
Robert L Conner ◽  
André Laroche ◽  
René Petroski ◽  
...  

A combination of genomic in situ hybridization (GISH) and meiotic pairing analysis of wheat-Thinopyrum partial amphiploids was employed to identify the genomic constitution and relationships between partial amphiploids derived from wheat and wheatgrass crosses. On the basis of similarities in the meiotic behavior and GISH patterns, the alien chromosomes of two of eight partial amphiploids, TAF46 and 'Otrastayuskaya 38', were judged to originate from Th. intermedium, whereas Th. ponticum was one of the parents of the other six partial amphiploids; PWM706, PWM206, PWM209, PWMIII, OK7211542, and Ag-wheat hybrid. Each of these partial amphiploids was found to contain a synthetic alien genome composed of different combinations of St-, J-, or Js-genome chromosomes. For relatedness of partial amphiploid lines, meiotic analysis of F1 hybrids and GISH results were generally complementary, but the latter offered greater precision in identifying constituent genomes.Key words: wheat, Thinopyrum, partial amphiploids, GISH, meiotic analysis.


Genome ◽  
2013 ◽  
Vol 56 (5) ◽  
pp. 303-305 ◽  
Author(s):  
Ming Hao ◽  
Jiangtao Luo ◽  
Lianquan Zhang ◽  
Zhongwei Yuan ◽  
Youliang Zheng ◽  
...  

The important cyclic translocation 4AL–5AL–7BS is an evolutionary signature of polyploidy in wheat. This study aimed to determine its distribution within the subspecies of Triticum turgidum L., using genomic in situ hybridization and fluorescence in situ hybridization. As it exists in all eight subspecies, this translocation appeared before the differentiation of the subspecies of T. turgidum. This translocation probably first appeared in T. turgidum subsp. dicoccoides and was then transmitted into the other subspecies. Its existence in all of the analyzed subspecies suggests that this translocation may confer an adaptive advantage during the course of evolution.


Genome ◽  
2001 ◽  
Vol 44 (1) ◽  
pp. 137-142 ◽  
Author(s):  
M Dogramac1-Altuntepe ◽  
P P Jauhar

The objective of this study was to investigate the effect of individual durum wheat (Triticum turgidum L.) chromosomes on crossability with maize (Zea mays L.) and to cytologically characterize the haploids recovered. Fourteen 'Langdon' (LDN) D-genome disomic substitution lines, a LDN Ph mutant (Ph1b ph1b), and normal 'Langdon' were pollinated with maize pollen. After pollination, hormonal treatment was given daily for up to 14 days. Haploid embryos were obtained from all lines and were aseptically cultured. From a total of 55 358 pollinated florets, 895 embryos were obtained. Only 14 of the embryos germinated and developed into healthy plants. Different substitution lines showed varying degrees of success. The most successful was the substitution 5D(5B) for both embryo formation and haploid plantlet production. These results indicate that the substitution of 5D for 5B confers on durum wheat a greater ability to produce haploids. Fluorescent genomic in situ hybridization (GISH) showed that the substitution haploids consisted of 7 A-genome chromosomes, 6 B-genome chromosomes, and 1 D-genome chromosome. Triticum urartu Tum. genomic DNA was efficient in probing the 7 A-genome chromosomes, although the D-genome chromosome also showed intermediate hybridization. This shows a close affinity between the A genome and D genome. We also elucidated the evolutionary translocation involving the chromosomes 4A and 7B that occurred at the time of evolution of durum wheat. We found that the distal segment translocated from chromosome 7B constitutes about 24% of the long arm of 4A.Key words: cyclic translocation 4A·5A·7B, crossability, disomic substitution, fluorescent genomic in situ hybridization (GISH), Triticum turgidum.


Sign in / Sign up

Export Citation Format

Share Document