Molecular cytogenetic characterization of an alloplasmic durum wheat line with a portion of chromosome 1D of Triticum aestivum carrying the scsae gene

Genome ◽  
2004 ◽  
Vol 47 (1) ◽  
pp. 206-214 ◽  
Author(s):  
Khwaja G Hossain ◽  
Oscar Riera-Lizarazu ◽  
Venugopal Kalavacharla ◽  
M Isabel Vales ◽  
Jamie L Rust ◽  
...  

Triticum aestivum (2n = 6x = 42, AABBDD) with Triticum longissimum (2n = 2x = 14; S1S1) cytoplasm ((lo) cytoplasm) has normal fertility and plant vigor. However, the nucleus of durum wheat (Triticum turgidum (2n = 4x = 28, AABB)) is incompatible with the T. longissimum cytoplasm, producing non-viable progeny. This incompatibility is alleviated by scsae, a species cytoplasm-specific (scs) gene, on the long arm of chromosome 1D (1DL) of common wheat. The hemizygous (lo) durum scsae line is male sterile and is maintained by crossing to normal durum wheat. After pollination, the seeds produced are either plump and viable (with scsae) or shriveled and inviable (without scsae). Thus, the chromosome with scsae is inherited as a whole without recombination. The objectives of this study were to characterize the chromosome carrying scsae and to determine the process through which this gene was introgressed into the (lo) durum background. Molecular marker analysis with 27 probes and primers mapped to homoeologous group 1 and genomic in situ hybridization using differentially labeled total genomic DNA of durum wheat and Aegilops tauschii suggest the presence of a 1AL segment in place of the distal region of 1DL. Owing to the absence of any detectable duplications or deletions, homoeologous recombination is the most likely mechanism by which this introgression occurred.Key words: homoeologous recombination, in situ hybridization, nuclear-cytoplasmic interaction, species cytoplasm specific gene

Genome ◽  
2001 ◽  
Vol 44 (1) ◽  
pp. 137-142 ◽  
Author(s):  
M Dogramac1-Altuntepe ◽  
P P Jauhar

The objective of this study was to investigate the effect of individual durum wheat (Triticum turgidum L.) chromosomes on crossability with maize (Zea mays L.) and to cytologically characterize the haploids recovered. Fourteen 'Langdon' (LDN) D-genome disomic substitution lines, a LDN Ph mutant (Ph1b ph1b), and normal 'Langdon' were pollinated with maize pollen. After pollination, hormonal treatment was given daily for up to 14 days. Haploid embryos were obtained from all lines and were aseptically cultured. From a total of 55 358 pollinated florets, 895 embryos were obtained. Only 14 of the embryos germinated and developed into healthy plants. Different substitution lines showed varying degrees of success. The most successful was the substitution 5D(5B) for both embryo formation and haploid plantlet production. These results indicate that the substitution of 5D for 5B confers on durum wheat a greater ability to produce haploids. Fluorescent genomic in situ hybridization (GISH) showed that the substitution haploids consisted of 7 A-genome chromosomes, 6 B-genome chromosomes, and 1 D-genome chromosome. Triticum urartu Tum. genomic DNA was efficient in probing the 7 A-genome chromosomes, although the D-genome chromosome also showed intermediate hybridization. This shows a close affinity between the A genome and D genome. We also elucidated the evolutionary translocation involving the chromosomes 4A and 7B that occurred at the time of evolution of durum wheat. We found that the distal segment translocated from chromosome 7B constitutes about 24% of the long arm of 4A.Key words: cyclic translocation 4A·5A·7B, crossability, disomic substitution, fluorescent genomic in situ hybridization (GISH), Triticum turgidum.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 113
Author(s):  
María-Dolores Rey ◽  
Carmen Ramírez ◽  
Azahara C. Martín

Polyploidization, or whole genome duplication (WGD), has an important role in evolution and speciation. One of the biggest challenges faced by a new polyploid is meiosis, in particular, discriminating between multiple related chromosomes so that only homologs recombine to ensure regular chromosome segregation and fertility. Here, we report the production of two new hybrids formed by the genomes of species from three different genera: a hybrid between Aegilops tauschii (DD), Hordeum chilense (HchHch), and Secale cereale (RR) with the haploid genomic constitution HchDR (n = 7× = 21); and a hybrid between Triticum turgidum spp. durum (AABB), H. chilense, and S. cereale with the constitution ABHchR (n = 7× = 28). We used genomic in situ hybridization and immunolocalization of key meiotic proteins to establish the chromosome composition of the new hybrids and to study their meiotic behavior. Interestingly, there were multiple chromosome associations at metaphase I in both hybrids. A high level of crossover (CO) formation was observed in HchDR, which shows the possibility of meiotic recombination between the different genomes. We succeeded in the duplication of the ABHchR genome, and several amphiploids, AABBHchHchRR, were obtained and characterized. These results indicate that recombination between the genera of three economically important crops is possible.


Blood ◽  
1989 ◽  
Vol 74 (5) ◽  
pp. 1791-1795 ◽  
Author(s):  
NL Seibel ◽  
IR Kirsch

Abstract Leukemias and lymphomas can now be classified according to the particular immunoglobulin, T-cell receptor, or growth-affecting genes they are expressing. Recognition of the structural alterations of lymphoid DNA has been used to identify neoplasms of previously uncertain lineage, to aid in diagnosis, and to define the state of differentiation of the neoplasm. We have developed a procedurally simple, rapid turnaround technique for using tumor-specific gene alterations as tumor-specific markers. Probes can be constructed that will recognize only the gene expressed in the tumor and not those in any of the normal cells when used with tissue in situ hybridization. We demonstrate the application of direct sequencing of a specific gene of interest from total RNA from a patient with multiple myeloma. A probe is then generated from this sequence and applied directly to patient material.


Genome ◽  
1997 ◽  
Vol 40 (5) ◽  
pp. 589-593 ◽  
Author(s):  
C. Pedersen ◽  
P. Langridge

Using the Aegilops tauschii clone pAs1 together with the barley clone pHvG38 for two-colour fluorescence in situ hybridization (FISH) the entire chromosome complement of hexaploid wheat was identified. The combination of the two probes allowed easy discrimination of the three genomes of wheat. The banding pattern obtained with the pHvG38 probe containing the GAA-satellite sequence was identical to the N-banding pattern of wheat. A detailed idiogram was constructed, including 73 GAA bands and 48 pAs1 bands. Identification of the wheat chromosomes by FISH will be particularly useful in connection with the physical mapping of other DNA sequences to chromosomes, or for chromosome identification in general, as an alternative to C-banding.Key words: Triticum aestivum, chromosome identification, fluorescence in situ hybridization, repetitive DNA sequences.


Genome ◽  
1997 ◽  
Vol 40 (5) ◽  
pp. 689-696 ◽  
Author(s):  
A Fominaya ◽  
S. Molnar ◽  
G. Fedak ◽  
K. C. Armstrong ◽  
N.-S. Kim ◽  
...  

Diagnostic markers for eight Thinopyrum distichum addition chromosomes in Triticum turgidum were established using C-banding, in situ hybridization, and restriction fragment length polymorphism analysis. The C-band karyotype conclusively identified individual Th. distichum chromosomes and distinguished them from chromosomes of T. turgidum. Also, TaqI and BamHI restriction fragments containing 5S and 18S–5.8S–26S rRNA sequences were identified as positive markers specific to Th. distichum chromosomes. Simultaneous fluorescence in situ hybridization showed both 5S and 18S–5.8S–26S ribosomal RNA genes to be located on chromosome IV. Thinopyrum distichum chromosome VII carried only a 18S–5.8S–26S rRNA locus and chromosome pair II carried only a 5S rRNA locus. The arrangement of these loci on Th. distichum chromosome IV was different from that on wheat chromosome pair 1B. Two other unidentified Th. distichum chromosome pairs also carried 5S rRNA loci. The homoeologous relationship between Th. distichum chromosomes IV and VII and chromosomes of other members of the Triticeae was discussed by comparing results obtained using these physical and molecular markers.Key words: Triticum turgidum, homoeologous relationship, Triticeae, addition lines, NOR.


Genome ◽  
1997 ◽  
Vol 40 (3) ◽  
pp. 362-369 ◽  
Author(s):  
J. Lima-Brito ◽  
H. Guedes-Pinto ◽  
G. E. Harrison ◽  
J. S. Heslop-Harrison

Southern and in situ hybridization were used to examine the chromosome constitution, genomic relationships, repetitive DNA sequences, and nuclear architecture in durum wheat × tritordeum hybrids (2n = 5x = 35), where tritordeum is the fertile amphiploid (2n = 6x = 42) between Hordeum chilense and durum wheat. Using in situ hybridization, H. chilense total genomic DNA hybridized strongly to the H. chilense chromosomes and weakly to the wheat chromosomes, which showed some strongly labelled bands. pHcKB6, a cloned repetitive sequence isolated from H. chilense, enabled the unequivocal identification of each H. chilense chromosome at metaphase. Analysis of chromosome disposition in prophase nuclei, using the same probes, showed that the chromosomes of H. chilense origin were in individual domains with only limited intermixing with chromosomes of wheat origin. Six major sites of 18S–26S rDNA genes were detected on the chromosomes of the hybrids. Hybridization to Southern transfers of restriction enzyme digests using genomic DNA showed some variants of tandem repeats, perhaps owing to methylation. Both techniques gave complementary information, extending that available from phenotypic, chromosome morphology, or isozyme analysis, and perhaps are useful for following chromosomes or chromosome segments during further crossing of the lines in plant breeding programs.Key words: In situ hybridization, molecular cytogenetics, plant breeding, Hordeum chilense, Southern hybridization, durum wheat, hybrids.


Genomics ◽  
1992 ◽  
Vol 14 (2) ◽  
pp. 548-549 ◽  
Author(s):  
G.C. Webb ◽  
P.A. Cowled ◽  
A. Evdokiou ◽  
J.H. Ford ◽  
I.J. Forbes

Sign in / Sign up

Export Citation Format

Share Document