scholarly journals Effects of Inorganic Salt Solutions on Vigour, Viability, Oxidative Metabolism and Germination Enzymes in Aged Cabbage and Lettuce Seeds

Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1164 ◽  
Author(s):  
Ademola Emmanuel Adetunji ◽  
Sershen ◽  
Boby Varghese ◽  
Norman W. Pammenter

This study assessed the potential of pre-hydration treatment with aqueous solutions (electrolysed [cathodic water; CW] and non-electrolysed) prepared from four different inorganic ion combinations: 1 mM CaCl2, 1 µm CaCl2 and 1 mM MgCl2 (CaMg, hereafter), 1 mM MgCl2 and 1 mM NaCl to invigorate controlled deteriorated (CDd) Brassicaoleracea (cabbage) and Lactucasativa (lettuce) seeds by assessing germination, vigour and biochemical markers (electrolyte leakage, lipid peroxidation products, protein carbonylation, and defence and germination associated enzymes) of oxidative stress. Additionally, the possible effects of pH of electrolysed CaMg and NaCl solutions were assessed. The inorganic salt solutions were applied to fresh seeds and seeds deteriorated to 75% viability (P75), 50% viability (P50) and 25% viability (P25); deionised water served as control. The pre-hydration treatment did not enhance normal seedling production in cabbage. However, Ca-containing and CW hydration treatments (CaCl2 CW, CaMg and CaMg CW [6.5], MgCl2 CW, NaCl CW and NaCl CW [6.5]) promoted normal seedling production of CDd lettuce seeds, while seedling vigour was enhanced by CaMg, CaMg CW (6.5), NaCl CW and NaCl CW (6.5) in CDd cabbage seeds, and CaCl2, CaCl2 CW, CaMg, CaMg CW (6.5), MgCl2 CW, NaCl CW and NaCl CW (6.5) in CDd lettuce seeds. The supplementation of Ca, a component of the ionised solutes, and/or the reducing potential of CW contributed to increased normal seedling production in lettuce seeds irrespective of the pH of treatment solutions or degree of deterioration. Overall, the pre-hydration treatments enhanced endogenous antioxidants leading to reduced levels of electrolyte leakage, lipid peroxidation, protein carbonylation, and enhanced germination enzyme activities in lettuce seeds. The study concluded that pre-hydration with selected inorganic salt solutions can invigorate debilitated lettuce seeds.

1989 ◽  
Vol 54 (10) ◽  
pp. 2644-2647 ◽  
Author(s):  
Petr Schneider ◽  
Jiří Rathouský

In porous materials filled with water or water solutions of inorganic salts, water freezes at lower temperatures than under normal conditions; the reason is the decrease of water vapor tension above the convex meniscus of liquid in pores. The freezing point depression is not very significant in pores with radii from 0.05 μm to 10 μm (about 0.01-2.5 K). Only in smaller pores, especially when filled with inorganic salt solutions, this depression is important.


2019 ◽  
Vol 35 (2) ◽  
pp. 141-145 ◽  
Author(s):  
Riou KAWAMURA ◽  
Momoka SATOU ◽  
Takuya YONESAKA ◽  
Akio YUCHI

Weed Science ◽  
2018 ◽  
Vol 66 (5) ◽  
pp. 574-580 ◽  
Author(s):  
Jialin Yu ◽  
Patrick E. McCullough ◽  
Mark A. Czarnota

AbstractAn annual bluegrass (Poa annuaL.) biotype with limited susceptibility to POST flumioxazin applications was identified in Georgia. The objectives of this research were to quantify tolerance levels of this biotype (R-biotype) to protoporphyrinogen oxidase (PPO) inhibitors and characterize physiological responses to flumioxazin. In dose–response experiments on 3- to 5-tiller plants, flumioxazin and sulfentrazone rates required to reduce dry-shoot biomass 50% from the nontreated were >14.5 and 10.4 times greater for the R-biotype, as compared with a susceptible (S)-biotype, respectively. Establishment of the R-biotype from seed was completely controlled by PRE applications of flumioxazin and oxadiazon, similar to the S-biotype. Tank mixtures of chlorpyrifos with flumioxazin did not enhance biomass reductions of the R-biotype, suggesting that tolerance levels may not be related to cytochrome P450–associated metabolism. In laboratory experiments, the R-biotype averaged 27% less electrolyte leakage, as compared with the S-biotype, after flumioxazin treatments. Lipid peroxidation in the R-biotype, as measured by malondialdehyde levels, averaged 25% less than the S-biotype at 72 h after broadcast flumioxazin treatments at 280 and 560 g ha−1. The tolerance to POST applications of PPO inhibitors in thisP. annuabiotype is associated with less lipid peroxidation and electrolyte leakage as compared with the S-biotype. These biochemical differences in biotypes may contribute to erratic levels of POST control from flumioxazin and could contribute to PPO-inhibitor resistance.


Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 733 ◽  
Author(s):  
Khaled A. A. Abdelaal ◽  
Yasser S.A. Mazrou ◽  
Yaser M. Hafez

Silicon is one of the most significant elements in plants under abiotic stress, so we investigated the role of silicon in alleviation of the detrimental effects of salinity at two concentrations (1500 and 3000 ppm sodium chloride) in sweet pepper plants in two seasons (2018 and 2019). Our results indicated that relative water content, concentrations of chlorophyll a and b, nitrogen, phosphorus and potassium contents, number of fruits plant−1, fruit fresh weight plant−1 (g) and fruit yield (ton hectare−1) significantly decreased in salt-stressed sweet pepper plants as compared to control plants. In addition, electrolyte leakage, proline, lipid peroxidation, superoxide (O2−) and hydrogen peroxide (H2O2) levels, soluble sugars, sucrose, and starch content as well as sodium content significantly increased under salinity conditions. Conversely, foliar application of silicon led to improvements in concentrations of chlorophyll a and b and mineral nutrients, water status, and fruit yield of sweet pepper plants. Furthermore, lipid peroxidation, electrolyte leakage, levels of superoxide, and hydrogen peroxide were decreased with silicon treatments.


Heliyon ◽  
2020 ◽  
Vol 6 (8) ◽  
pp. e04703
Author(s):  
M.J. Álvarez-Robles ◽  
M.P. Bernal ◽  
A. Sánchez-Guerrero ◽  
F. Sevilla ◽  
R. Clemente

Sign in / Sign up

Export Citation Format

Share Document