Depression of freezing temperature of water and water solutions in porous materials

1989 ◽  
Vol 54 (10) ◽  
pp. 2644-2647 ◽  
Author(s):  
Petr Schneider ◽  
Jiří Rathouský

In porous materials filled with water or water solutions of inorganic salts, water freezes at lower temperatures than under normal conditions; the reason is the decrease of water vapor tension above the convex meniscus of liquid in pores. The freezing point depression is not very significant in pores with radii from 0.05 μm to 10 μm (about 0.01-2.5 K). Only in smaller pores, especially when filled with inorganic salt solutions, this depression is important.

1935 ◽  
Vol 18 (4) ◽  
pp. 485-490 ◽  
Author(s):  
David I. Hitchcock ◽  
Ruth B. Dougan

By a method involving equilibration of ice and solution, and analysis of the solution, freezing point depressions of solutions of sodium citrate, oxalate, and fluoride have been determined over the range Δ = 0.45 to 0.65°C. Determinations with sodium chloride solutions have confirmed the accuracy of the method. In each case the freezing point depression is given, within 0.002°C., as a linear function of the concentration. By the use of these linear equations it is possible to prepare a solution of any of these four salts isotonic with a given biological fluid of known freezing point, provided the latter falls within the range studied.


1963 ◽  
Vol 46 (3) ◽  
pp. 605-615 ◽  
Author(s):  
Rene Bloch ◽  
D. H. Walters ◽  
Werner Kuhn

When investigating the freezing behaviour (by thermal analysis) of the glycerol-extracted adductor muscle of Mytilus edulis it was observed that the temperature of ice formation in the muscular tissue was up to 1.5°C lower than the freezing point of the embedding liquid, a 0.25 N KCl solution with pH = 4.9 with which the tissue had been equilibrated prior to the freezing experiment. A smaller freezing point depression was observed if the pH values of the embedding 0.25 N KCl solution were above or below pH = 4.9. Reasoning from results obtained previously in analogous experiments with artificial gels, the anomalous freezing depression is explained by the impossibility of growing at the normal freezing temperature regular macroscopic crystals inside the gel, due to the presence of the gel network. The freezing temperature is here determined by the size of the microprisms penetrating the meshes of the network at the lowered freezing temperature. This process leads finally to an ice block of more or less regular structure in which the filaments are embedded. Prerequisite for this hindrance of ideal ice growth is a sufficient tensile strength of the filamental network. The existence of structurally caused freezing point depression in biological tissue is likely to invalidate many conclusions reported in the literature, in which hypertonicity was deduced from cryoscopic data.


2014 ◽  
Vol 716-717 ◽  
pp. 118-121
Author(s):  
Xin Yi Zhao ◽  
Yu Feng Peng ◽  
Cong Cong Zhai ◽  
Xue Yun Han ◽  
Yi Zhang

The refractive index of double-distilled water and inorganic salt solutions of concentrations varying from 0.4 to 100 ppt (‰) have been measured at 20 Celsius degrees using Abbe refractometer, respectively. The inorganic salts such as NaCl, MgSO4, KCl and MgCl2,these forming the major constituents of seawater are used as solutes of the water solution. The effect of the concentration of these constituents on the refractive index of the solution is experimentally investigated. And meanwhile, the index of refraction studies are carried out for the laser wavelength of 405nm, 450nm, 532nm and 633nm under the case of varying concentration. The results show that the refractive index of the solution will be linearly increased with the increase of the concentration of these constituents. The index of refraction differs for the different solutes when their concentration is same at a certain wavelength.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 974
Author(s):  
Yuanheng Zhao ◽  
Cristina Bilbao-Sainz ◽  
Delilah Wood ◽  
Bor-Sen Chiou ◽  
Matthew J. Powell-Palm ◽  
...  

Isochoric freezing is a pressure freezing technique that could be used to retain the beneficial effects of food storage at temperatures below their freezing point without ice damage. In this study, potato cylinders were frozen in an isochoric system and examined using full factorial combinations of three processing procedures (immersed in water, vacuum-packed and immersed in ascorbic acid solution), four freezing temperatures/pressures (−3 °C/37 MPa, −6 °C/71 MPa, −9 °C/101 MPa and −15 °C/156 MPa) and two average compression rates (less than 0.02 and more than 0.16 MPa/s). The effects of process variables on critical quality attributes of frozen potatoes after thawing were investigated, including mass change, volume change, water holding capacity, color and texture. Processing procedure and freezing temperature/pressure were found to be highly significant factors, whereas the significance of the compression rate was lower. For the processing procedures, immersion in an isotonic solution of 5% ascorbic acid best preserved quality attributes. At the highest pressure level of 156 MPa and low compression rate of 0.02 MPa/s, potato samples immersed in ascorbic acid retained their color, 98.5% mass and 84% elasticity modulus value. These samples also showed a 1% increase in volume and 13% increase in maximum stress due to pressure-induced hardening.


2020 ◽  
Vol 5 (12) ◽  
Author(s):  
Tingtao Zhou ◽  
Mohammad Mirzadeh ◽  
Roland J.-M. Pellenq ◽  
Martin Z. Bazant

1978 ◽  
Vol 44 (2) ◽  
pp. 254-257 ◽  
Author(s):  
Y. Kakiuchi ◽  
A. B. DuBois ◽  
D. Gorenberg

Hansen's membrane manometer method for measuring plasma colloid osmotic pressure was used to obtain the osmolality changes of dogs breathing different levels of CO2. Osmotic pressure was converted to osmolality by calibration of the manometer with saline and plasma, using freezing point depression osmometry. The addition of 10 vol% of CO2 to tonometered blood caused about a 2.0 mosmol/kg H2O increase of osmolality, or 1.2% increase of red blood cell volume. The swelling of the red blood cells was probably due to osmosis caused by Cl- exchanged for the HCO3- which was produced rapidly by carbonic anhydrase present in the red blood cells. The change in colloid osmotic pressure accompanying a change in co2 tension was measured on blood obtained from dogs breathing different CO2 mixtures. It was approximately 0.14 mosmol/kg H2O per Torr Pco2. The corresponding change in red cell volume could not be calculated from this because water can exchange between the plasma and tissues.


2013 ◽  
Vol 703 ◽  
pp. 282-286
Author(s):  
Ren Cai Zhang ◽  
Xiang Yu ◽  
Xing Ju Liu ◽  
Jin Hai Zhai ◽  
Zhen Wu Ning

An efficient automated milk detector based on freezing point depression is designed. This detector shares characters of high efficiency and good stability with accuracy and automation. Its main parts include temperature sensor of IC (Integrated Circuit), pinion-rack mechanism and crank-rocker mechanism and electronic control system. Monitoring in-situ change of milk freezing curve and developing efficiency of sampling can be available by means of pinion-rack mechanism and IC temperature sensor mechatronics design. As a result, adulterating status of milk can be discriminated in a rapid and accurate and automated way. The detector may be employed to detect liquid foods other than milk as well.


Sign in / Sign up

Export Citation Format

Share Document