scholarly journals Synthesis and Photovoltaic Effect of Electron-Withdrawing Units for Low Band Gap Conjugated Polymers Bearing Bi(thienylenevinylene) Side Chains

Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1461 ◽  
Author(s):  
Jianfeng Li ◽  
Yufei Wang ◽  
Ningning Wang ◽  
Zezhou Liang ◽  
Xu Wang ◽  
...  

A novel (E)-5-(2-(5-alkylthiothiophen-2-yl)vinyl)thien-2-yl (TVT)-comprising benzo[1,2-b:4,5-b’]dithiophene (BDT) derivative (BDT-TVT) was designed and synthetized to compose two donor-acceptor (D-A) typed copolymers (PBDT-TVT-ID and PBDT-TVT-DTNT) with the electron-withdrawing unit isoindigo (ID) and naphtho[1,2-c:5,6-c′]bis[1,2,5]thiadiazole (NT), respectively. PBDT-TVT-ID and PBDT-TVT-DTNT showed good thermal stability (360 °C), an absorption spectrum from 300 nm to 760 nm and a relatively low lying energy level of Highest Occupied Molecular Orbital (EHOMO) (−5.36 to –5.45 eV), which could obtain a large open-circuit voltage (Voc) from photovoltaic devices with PBDT-TVT-ID or PBDT-TVT-DTNT. The photovoltaic devices with ITO/PFN/polymers: PC71BM/MoO3/Ag structure were assembled and exhibited a good photovoltaic performance with a power conversion efficiency (PCE) of 4.09% (PBDT-TVT-ID) and 5.44% (PBDT-TVT-DTNT), respectively. The best PCE of a PBDT-TVT-DTNT/PC71BM-based device mainly originated from its wider absorption, higher hole mobility and favorable photoactive layer morphology.

Coatings ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 203 ◽  
Author(s):  
Marie Faure ◽  
Trevor Grant ◽  
Benoît Lessard

Silicon phthalocyanines (SiPc) are showing promise as both ternary additives and non-fullerene acceptors in organic photovoltaics (OPVs) as a result of their ease of synthesis, chemical stability and strong absorption. In this study, bis(3,4,5-trifluorophenoxy) silicon phthalocyanine ((345F)2-SiPc)) and bis(2,4,6-trifluorophenoxy) silicon phthalocyanine ((246F)2-SiPc)) are employed as acceptors in mixed solution/evaporation planar heterojunction (PHJ) devices. The donor layer, either poly(3-hexylthiophene) (P3HT) or poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT), was spin coated followed by the evaporation of the SiPc acceptor thin film. Several different donor/acceptor combinations were investigated in addition to investigations to determine the effect of film thickness on device performance. Finally, the effects of annealing, prior to SiPc deposition, after SiPc deposition, and during SiPc deposition were also investigated. The devices which performed the best were obtained using PCDTBT as the donor, with a 90 nm film of (345F)2-SiPc as the acceptor, followed by thermal annealing at 150 °C for 30 min of the entire mixed solution/evaporation device. An open-circuit voltage (Voc) of 0.88 V and a fill factor (FF) of 0.52 were achieved leading to devices that outperformed corresponding fullerene-based PHJ devices.


2018 ◽  
Vol 9 ◽  
pp. 1802-1808 ◽  
Author(s):  
Katherine Atamanuk ◽  
Justin Luria ◽  
Bryan D Huey

The nanoscale optoelectronic properties of materials can be especially important for polycrystalline photovoltaics including many sensor and solar cell designs. For thin film solar cells such as CdTe, the open-circuit voltage and short-circuit current are especially critical performance indicators, often varying between and even within individual grains. A new method for directly mapping the open-circuit voltage leverages photo-conducting AFM, along with an additional proportional-integral-derivative feedback loop configured to maintain open-circuit conditions while scanning. Alternating with short-circuit current mapping efficiently provides complementary insight into the highly microstructurally sensitive local and ensemble photovoltaic performance. Furthermore, direct open-circuit voltage mapping is compatible with tomographic AFM, which additionally leverages gradual nanoscale milling by the AFM probe essentially for serial sectioning. The two-dimensional and three-dimensional results for CdTe solar cells during in situ illumination reveal local to mesoscale contributions to PV performance based on the order of magnitude variations in photovoltaic properties with distinct grains, at grain boundaries, and for sub-granular planar defects.


Author(s):  
H. Bitam ◽  
B. Hadjoudja ◽  
Beddiaf Zaidi ◽  
C. Shakher ◽  
S. Gagui ◽  
...  

Due to increased energy intensive human activities resulting accelerated demand for electric power coupled with occurrence of natural disasters with increased frequency, intensity, and duration, it becomes essential to explore and advance renewable energy technology for sustainability of the society. Addressing the stated problem and providing a radical solution has been attempted in this study. To harvest the renewable energy, among variety of solar cells reported, a composite a-Si/CZTS photovoltaic devices has not yet been investigated. The calculated parameters for solar cell based on the new array of layers consisting of a-Si/CZTS are reported in this study. The variation of i) solar cell efficiency as a function of CZTS layer thickness, temperature, acceptor, and donor defect concentration; ii) variation of the open circuit current density as a function of temperature, open circuit voltage; iii) variation of open circuit voltage as a function of the thickness of the CZTS layer has been determined. There has been no reported study on a-Si/CZTS configuration-based solar cell, analysis of the parameters, and study to address the challenges imped efficiency of the photovoltaic device and the same has been discussed in this work. The value of the SnO2/a-Si/CZTS solar cells obtained from the simulation is 23.9 %.


Sign in / Sign up

Export Citation Format

Share Document