scholarly journals Study of POSS on the Properties of Novel Inorganic Dental Composite Resin

Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 478 ◽  
Author(s):  
Jiahui Wang ◽  
Yizhi Liu ◽  
Jianxin Yu ◽  
Yi Sun ◽  
Weili Xie

Various amounts of methacryl polyhedral oligomeric silsesquioxane (POSS) were explored to be incorporated into novel nano SiO2 dental resin composites using light curing method. The scanning electron microscopy (SEM), optical microscopy, fourier transform infrared spectroscopy (FTIR), nanoindentation, nanoscratch and three-point flexure tests were performed. The volumetric shrinkage and mechanical properties such as hardness, elastic modulus, resistance, flexural strength and fracture energy were analyzed. With the additions of POSS, the volume shrinkage decreased and the mechanical properties initially increased. The effects of POSS on these properties were studied to provide a reference for clinically selecting a composite resin with excellent properties.

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2769
Author(s):  
Jonne Oja ◽  
Lippo Lassila ◽  
Pekka K. Vallittu ◽  
Sufyan Garoushi

The aim of current in vitro research was to determine the effect of hydrothermal accelerated aging on the mechanical properties and wear of different commercial dental resin composites (RCs). In addition, the effect of expiration date of the composite prior its use was also evaluated. Five commercially available RCs were studied: Conventional RCs (Filtek Supreme XTE, G-aenial Posterior, Denfil, and >3y expired Supreme XTE), bulk-fill RC (Filtek Bulk Fill), and short fiber-reinforced RC (everX Posterior). Three-point flexural test was used for determination of ultimate flexural strength (n = 8). A vickers indenter was used for testing surface microhardness. A wear test was conducted with 15,000 chewing cycles using a dual-axis chewing simulator. Wear pattern was analyzed by a three-dimensional (3D) noncontact optical profilometer. Degree of C=C bond conversion of monomers was determined by FTIR-spectrometry. The specimens were either dry stored for 48 h (37 °C) or boiled (100 °C) for 16 h before testing. Scanning electron microscopy (SEM) was used to evaluate the microstructure of each material. Data were analyzed using ANOVA (p = 0.05). Hydrothermal aging had no significant effects on the surface wear and microhardness of tested RCs (p > 0.05). While flexural strength significantly decreased after aging (p < 0.05), except for G-aenial Posterior, which showed no differences. The lowest average wear depth was found for Filtek Bulk Fill (29 µm) (p < 0.05), while everX Posterior and Denfil showed the highest wear depth values (40, 39 µm) in both conditions. Passing the expiration date for 40 months did not affect the flexural strength and wear of tested RC. SEM demonstrated a significant number of small pits on Denfil’s surface after aging. It was concluded that the effect of accelerated aging may have caused certain weakening of the RC of some brands, whereas no effect was found with one brand of RC. Thus, the accelerated aging appeared to be more dependent on material and tested material property.


2020 ◽  
Vol 28 (2) ◽  
pp. 165-173 ◽  
Author(s):  
Shahid Ali ◽  
Laila Sangi ◽  
Naresh Kumar ◽  
Bharat Kumar ◽  
Zohaib Khurshid ◽  
...  

2018 ◽  
Vol 6 (3) ◽  
pp. 477-486 ◽  
Author(s):  
Yu Zhang ◽  
Cui Huang ◽  
Jiang Chang

MCS containing resin composites possess enhanced mechanical properties and antibacterial activity, and can smartly induce the deposition of apatite minerals.


Author(s):  
Guang HONG ◽  
Zhen CHEN ◽  
Jian-min HAN ◽  
Wei-qi WANG ◽  
Ping GAO ◽  
...  

2020 ◽  
Vol 4 (2) ◽  
pp. 81 ◽  
Author(s):  
Tejas Barot ◽  
Deepak Rawtani ◽  
Pratik Kulkarni

Objective: The objective of this study was to explore the effect of Chlorhexidine-loaded Halloysite nanotubes (HNT/CHX) fillers (diverse mass fractions from 1 to 10 wt.%) on physicochemical, morphological and biological properties of newly developed experimental dental resin composite, in order to compare with the properties of composites composed of conventional glass fillers. Methods: The dental resin composites were prepared by incorporating various proportions of HNT/CHX. Six different groups of specimens: control group and five groups composed of varied mass fractions of HNT/CHX (e.g., 1.0, 2.5, 5.0, 7.5 and 10 wt.%) as fillers in each group were fabricated. Mechanical properties of the composites were monitored, using UTM. The degree of conversion of dental resin composites and their depth of cure were also evaluated. Antimicrobial properties of dental composites were studied in vitro by applying agar diffusion test on strain Streptococcus mutans and cytotoxicity were studied using NIH-3T3 cell line. Results: The incorporation of varied mass fractions (1.0 to 5.0 wt.%) of HNT/CHX in dental resins composites enhanced mechanical properties considerably with significant antibacterial activity. The slight decrease in curing depth and degree of conversion values of composites indicates its durability. No cytotoxicity was noticed on NIH-3T3 cell lines. Significance: Consistent distribution of HNT/CHX as a filler into dental composites could substantially improve not only mechanical properties but also biological properties of dental composites.


Background: Setting of conventional glass ionomers cement and dental resin composites as filling materials is predominantly through polymerization reaction, which is usually induced by light. The objective of this study was to assess the temperature changes, light intensities, sorption and solubility capability and comparative micro hardness in Dental Resin Composites (DRC) by using two different light curing units that is Quartz Tungsten Halogen (QTH) and Light Emitting Diodes (LED). Methods: This analytical, experimental, in-vitro study was spanned over one month, conducted in the laboratory of Dental Materials, Dr. Ishrat-ul-Ibad Khan Institute of Oral Health Sciences. Through non-probability, convenient sampling, 60 samples of DRCs was prepared as 10mm in diameter and 2mm in thickness in the steel moulds by a single trained operator. Effect of heat generation, light intensities, sorption and solubility and micro hardness during polymerization of DRCs were all measured. Statistical analysis was done using SPSS with descriptive statistics and two sample independent t-tests. The p-value of <0.05 was considered significant at 95 % confidence level. Results: Mean surface micro hardness of DRC was found to be 15.48±0.46 and 18.26±0.53 when QTH and LED lamps were employed respectively. Whereas, mean light intensity of QTH and LED lamps were found to be 434 and 925mW/cm2. No significant difference in temperature change during polymerization reaction (p=0.128) and in sorption and solubility capability (p=0.001) of DRC was observed. Conclusion: Light-emitting diodes were evaluated to be more effective than Quartz Tungsten Halogen Light in achieving increased surface micro hardness of DRC. Keywords: Light; Glass Ionomer Cements; Tungsten; Hardness.


2014 ◽  
Vol 54 ◽  
pp. 430-435 ◽  
Author(s):  
Saad Omar Alsharif ◽  
Hazizan Bin Md Akil ◽  
Nasser Abbas Abd El-Aziz ◽  
Zainal Arifin Bin Ahmad

Sign in / Sign up

Export Citation Format

Share Document