scholarly journals A Composite Anion Conducting Membrane Based on Quaternized Cellulose and Poly(Phenylene Oxide) for Alkaline Fuel Cell Applications

Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2676
Author(s):  
Dong Ho Kang ◽  
Gautam Das ◽  
Hyon Hee Yoon ◽  
Il Tae Kim

In this study, composite anion exchange membranes (AEMs) were synthesized by cross-linking poly(phenylene oxide) (PPO) with cellulose functionalized by 1,4-diazabicyclo[2.2.2]-octane (DABCO) or di-guanidine (DG). The structural and morphological characteristics of the synthesized AEMs were characterized by FTIR, 1H-NMR, SEM, TEM, and AFM, while their performance was evaluated in terms of ionic conductivity, water uptake, ion exchange capacity, and tensile strength with respect to the loading of the quaternized cellulose in the quaternized PPO (qPPO) matrix. The composite AEMs exhibited considerably enhanced mechanical and alkaline stability as well as good anion conductivity. The composite AEM with 7 wt% of cellulose functionalized with DG in the qPPO matrix (qPPO/DG-Cel7) exhibited a maximum hydroxide conductivity of 0.164 S cm−1. Furthermore, a urea/O2 fuel cell prepared using this composite membrane showed a maximum power density of 12.3 mW cm−2. The results indicated that the cellulose-based composite membranes showed a satisfactory performance in alkaline fuel cell applications.

Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 914 ◽  
Author(s):  
Lucia Mazzapioda ◽  
Stefania Panero ◽  
Maria Assunta Navarra

Nafion composite membranes, containing different amounts of mesoporous sulfated titanium oxide (TiO2-SO4) were prepared by solvent-casting and tested in proton exchange membrane fuel cells (PEMFCs), operating at very low humidification levels. The TiO2-SO4 additive was originally synthesized by a sol-gel method and characterized through x-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and ion exchange capacity (IEC). Peculiar properties of the composite membranes, such as the thermal transitions and ion exchange capacity, were investigated and here discussed. When used as an electrolyte in the fuel cell, the composite membrane guaranteed an improvement with respect to bare Nafion systems at 30% relative humidity and 110 °C, exhibiting higher power and current densities.


2016 ◽  
Vol 7 (14) ◽  
pp. 2464-2475 ◽  
Author(s):  
Liang Zhu ◽  
Tawanda J. Zimudzi ◽  
Nanwen Li ◽  
Jing Pan ◽  
Bencai Lin ◽  
...  

To produce anion conductive and durable polymer electrolytes for alkaline fuel cell applications, a series of cross-linked quaternary ammonium functionalized poly(2,6-dimethyl-1,4-phenylene oxide)s with mass-based ion exchange capacities (IEC) ranging from 1.80 to 2.55 mmol g−1 were synthesized via thiol–ene click chemistry.


2014 ◽  
Vol 666 ◽  
pp. 3-7
Author(s):  
Theampetch Apichaya ◽  
Paweena Prapainainar ◽  
Chaiwat Prapainainar

In this paper, proton conducting composite membranes of Nafion®-mordenite for direct methanol fuel cell (DMFC) were prepared using solution casting method. Mordenite, used as inorganic filler, was incorporated into Nafion polymer in order to improve membrane properties for DMFC application. Effect of solution casting temperature on resulting composite membranes was focused. The temperature of the membrane preparation was varied from 80 to 120°C. Properties and morphology of the resulting membranes including solubility, water uptake, ion – exchange capacity were investigated and reported. It was found that composite membrane prepared at 100°C gave the most alcohol resistance and mechanical stability membrane with 0.59% soluble. Furthermore, it gave highest ion – exchange capacity, 0.10 meq⋅g-1, which is 33% and 98% higher than the membranes prepared at 80°C and 120°C respectively.


2015 ◽  
Vol 14 (01n02) ◽  
pp. 1460016 ◽  
Author(s):  
Jun Ma ◽  
Dongyun Su ◽  
Hongjun Ni ◽  
Mingyu Huang ◽  
Xingxing Wang

A variety of modification approaches such as cross-linking and nano blending have been explored to prepare efficient membranes based on Sulfonated polyether ether ketone (SPEEK). The addition filler is also one of the most widely used approaches to modify the SPEEK. The crosslinked membranes were utilized as proton exchange membranes (PEM) for fuel cell application. The performances of these composite membranes were comparative researched in terms of water uptake, ion exchange capacity, proton conductivity, and methanol permeability.While the nanohybrid membranes display remarkably enhanced proton conduction property due to the incorporation of additional sites for proton transport and the formation of well-connected channels by bridging the hydrophilic domains in SPEEK matrix. The as-prepared nanohybrid membranes also show elevated thermal and mechanical stabilities as well as decreased methanol permeability.


2016 ◽  
Vol 4 (1) ◽  
pp. 132-141 ◽  
Author(s):  
Andrew M. Park ◽  
Ryszard J. Wycisk ◽  
Xiaoming Ren ◽  
Forbes E. Turley ◽  
Peter N. Pintauro

Electrospun dual fiber mats were transformed into an anion exchange membrane and then used in an alkaline fuel cell.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Lucie Zarybnicka ◽  
Eliska Stranska ◽  
Jana Machotova ◽  
Gabriela Lencova

The present work deals with the surface modification of a commercial microfiltration poly(ethersulfone) membrane by graft polymerization technique. Poly(styrene-co-divinylbenzene-co-4-vinylbenzylchloride) surface layer was covalently attached onto the poly(ethersulfone) support layer to improve the membrane electrochemical properties. Followed by amination, a two-layer anion-exchange membrane was prepared. The effect of surface layer treatment using the extraction in various solvents on membrane morphological and electrochemical characteristics was studied. The membranes were tested from the point of view of water content, ion-exchange capacity, specific resistance, permselectivity, FT-IR spectroscopy, and SEM analysis. It was found that the two-layer anion-exchange membranes after the extraction using tetrahydrofuran or toluene exhibited smooth and porous surface layer, which resulted in improved ion-exchange capacity, electrical resistance, and permselectivity of the membranes.


2019 ◽  
Vol 3 (8) ◽  
pp. 1916-1928 ◽  
Author(s):  
Junpei Miyake ◽  
Kenji Miyatake

The progress, potential and remaining challenges of state-of-the-art anion exchange membranes (AEMs), in particular, our quaternized poly(arylene perfluoroalkylene)s (QPAFs), for alkaline fuel cell applications, are overviewed and discussed.


Sign in / Sign up

Export Citation Format

Share Document