Performances of Sulfonated Polyether Ether Ketone Composite Membranes for Fuel Cell Applications

2015 ◽  
Vol 14 (01n02) ◽  
pp. 1460016 ◽  
Author(s):  
Jun Ma ◽  
Dongyun Su ◽  
Hongjun Ni ◽  
Mingyu Huang ◽  
Xingxing Wang

A variety of modification approaches such as cross-linking and nano blending have been explored to prepare efficient membranes based on Sulfonated polyether ether ketone (SPEEK). The addition filler is also one of the most widely used approaches to modify the SPEEK. The crosslinked membranes were utilized as proton exchange membranes (PEM) for fuel cell application. The performances of these composite membranes were comparative researched in terms of water uptake, ion exchange capacity, proton conductivity, and methanol permeability.While the nanohybrid membranes display remarkably enhanced proton conduction property due to the incorporation of additional sites for proton transport and the formation of well-connected channels by bridging the hydrophilic domains in SPEEK matrix. The as-prepared nanohybrid membranes also show elevated thermal and mechanical stabilities as well as decreased methanol permeability.

2017 ◽  
Vol 6 (2) ◽  
pp. 165 ◽  
Author(s):  
Tutuk Djoko Kusworo ◽  
Muhammad Fahmi Hakim ◽  
H Hadiyanto

Direct methanol fuel cell (DMFC) is one of several types of fuel cells that use proton exchange membrane  (PEM) as a liaison between the reaction at the cathode and anode. Polyether-ether ketone (PEEK) is one of the aromatic polymer that can be applied in DMFC because of its characteristics that are resistant to DMFC environment. The polymer is also quite easy in the sulfonation process using concentrated sulfuric acid. However the role of polyether-ether ketone as DMFC membrane material is still lack of advantage due to its low conductivity and therefore the modification is required to increase the value of proton conductivity of the membrane. The purpose of this experiment is to modify the membrane (sPEEK) with the addition of cyclodextrins-silica, additive variation charge of 2%, 6% and 10%, time and temperature were fixed at 4 hours and 65oC. The results showed the best results of membrane sPEEK was obtained at the addition of -cyclodextrin -silica 10% with the membrane characteristics of ion exchange capacity of 2.19 meq / g polymer, the degree of sulfonation of 81%, methanol permeability of 3.09 x 10-9 cm2 / s and water uptake membrane of 64%. Keywords: Direct Methanol Fuel Cell, Poly(ether ether ketone), cyclodextrin-silica, sulfonation, ionic conductivity.Article History: Received January 18th 2017; Received in revised form April 21st 2017; Accepted June 22nd 2017; Available onlineHow to Cite This Article: Kusworo, T.D., Hakim, M.F. and Hadiyanto, H. (2017) Enhancement of Hybrid SPEEK Based Polymer–Cyclodextrin-Silica Inorganic Membrane for Direct Methanol Fuel Cell Application. International Journal of Renewable Energy Development, 6(2), 165-170.https://doi.org/10.14710/ijred.6.2.165-170


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 914 ◽  
Author(s):  
Lucia Mazzapioda ◽  
Stefania Panero ◽  
Maria Assunta Navarra

Nafion composite membranes, containing different amounts of mesoporous sulfated titanium oxide (TiO2-SO4) were prepared by solvent-casting and tested in proton exchange membrane fuel cells (PEMFCs), operating at very low humidification levels. The TiO2-SO4 additive was originally synthesized by a sol-gel method and characterized through x-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and ion exchange capacity (IEC). Peculiar properties of the composite membranes, such as the thermal transitions and ion exchange capacity, were investigated and here discussed. When used as an electrolyte in the fuel cell, the composite membrane guaranteed an improvement with respect to bare Nafion systems at 30% relative humidity and 110 °C, exhibiting higher power and current densities.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1570 ◽  
Author(s):  
A. Rico-Zavala ◽  
J. L. Pineda-Delgado ◽  
A. Carbone ◽  
A. Saccà ◽  
E. Passalacqua ◽  
...  

The aim of this work is the evaluation of a Sulfonated Poly Ether-Ether Ketone (S-PEEK) polymer modified by the addition of pure Santa Barbara Amorphous-15 (SBA-15, mesoporous silica) and SBA-15 previously impregnated with phosphotungstic acid (PWA) fillers (PWA/SBA-15) in order to prepare composite membranes as an alternative to conventional Nafion® membranes. This component is intended to be used as an electrolyte in electrochemical energy systems such as hydrogen and methanol Proton Exchange Membrane Fuel Cell (PEMFC) and Electrochemical Hydrogen Pumping (EHP). The common requirements for all the applications are high proton conductivity, thermomechanical stability, and fuel and oxidant impermeability. The morphology of the composite membranes was investigated by Scanning Electron Microscopy- Energy Dispersive X-ray Spectroscopy (SEM-EDS) analysis. Water Uptake (Wup), Ion Exchange Capacity (IEC), proton conductivity, methanol permeability and other physicochemical properties were evaluated. In PEMFC tests, the S-PEEK membrane with a 10 wt.% SBA-15 loading showed the highest performance. For EHP, the inclusion of inorganic materials led to a back-diffusion, limiting the compression capacity. Concerning methanol permeability, the lowest methanol crossover corresponded to the composites containing 5 wt.% and 10 wt.% SBA-15.


2005 ◽  
Vol 885 ◽  
Author(s):  
Barbara Mecheri ◽  
Alessandra D'Epifanio ◽  
Maria Luisa Di Vona ◽  
Enrico Traversa ◽  
Silvia Licoccia ◽  
...  

ABSTRACTComposite membranes, prepared by mixing sulfonated polyether ether ketone (SPEEK) and WO3·2H2O in dimethylacetamide, were characterized by Thermogravimetry, Electrochemical Impedance Spectroscopy and Water Uptake measurements to evaluate their possible performance as proton exchange membranes (PEM). The body of results indicated the existence of a coordinative interaction between the water molecules of tungsten oxide and the sulfonic acid (-SO3H) groups of SPEEK. Moreover, EIS data demonstrated that the proton conductivity of the composite membranes is higher than both that of pure SPEEK and pure tungsten oxide, suggesting the presence of ion-rich regions where the proton transfer is favored. The SO3H - H2O interaction not only lead to enhancement of the proton conductivity of the membranes but also to improvement of their heat resistance as well as to decrease their water solubility.


2018 ◽  
Vol 6 (1) ◽  
pp. 563
Author(s):  
Sri Handayani ◽  
Eniya Listiani Dewi ◽  
Widodo Wahyu Purwanto ◽  
Roekmijati W. Soemantojo

The influence of the additive on the characteristics of the sulfonated polyether-ether ketone electrolyte membrane for direct methanol fuel cell applicationsThe weakness of comercial membrane (Nafion-117) for the application of direct methanol fuel cell is highly methanol cross-over. It is decreasing the cell voltage. To minimize the methanol cross-over in a membrane, there are two methods can beproposed: the modification of conventional membrane structure (Nafion-117) and development of novel electrolyte membrane (and modified). PEEK can be used as one of alternatives for  direct methanol fuel cell membranes. This PEEK polymer has the stability of chemistry mechanic and thermal. In order to increase ionic conductivity and to decrease methanol permeability. It is necessary to make the modification of sulfonated polyether-ether ketone (sPEEK) with adding higroscopic inorganic additives (SiO2 and  H-zeolit). The type of additive which can increase ionic conductivity for sPEEK membrane is SiO2 (3 wt.%) 2 times, and decrease ionic conductivity 1,7 times for H-zeolite. Methanol permeability of membrane sPEEK with silica added increase 5 times and H-zeolite 2 times compared to sPEEK membrane without additive. Although composite membrane have increasing methanol permeability but that values are still lower than Nafion-117. Conclusion, the addition of SiO2 as additives has given best performance 0,09 S/cm ionic conductivity, 10-7 cm2/S methanol permeability dan 17 wt.% water swelling.Keywords: Additive, Direct Methanol Fuel Cell, Polyether-Ether Ketone, SiO2, H-ZeoliteAbstrakKelemahan membran komersial (Nafion-117) untuk aplikasi sel bahan bakar metanol langsung (direct methanol fuel cell) adalah methanol crossover yang tinggi, hal tersebut yang dapat menurunkan kinerja voltase sel secara keseluruhan. Dalam rangka mengurangi methanol crossover melalui membran, ada dua pendekatan yaitu modifikasi struktur membran konvensional (Nafion) atau pengembangan membran polimer elektrolit (dan modifikasi). Salah satu polimer aromatik yang menarik perhatian sebagai membran elektrolit pada aplikasi DMFC adalah polieter-eter keton (PEEK) karena polimer tersebut mempunyai kestabilan kimia, mekanik dan panas. Agar dapat meningkatkan konduktivitas ionik dan menurunkan permeabilitas metanol dilakukan modifikasi pada polieter-eter keton tersulfonasi (sPEEK) yaitu dengan menambahkan aditif anorganik yang bersifat higroskopik (SiO2 dan H-zeolit) Jenis aditif yang dapat meningkatkan konduktivitas ionik untuk membran elektrolit adalah SiO2 (3% berat) yaitu  sebesar 2 kali, sedangkan H-zeolit menurunkan konduktivitas ionik sebesar 1,7 kali. Permeabilitas metanol membran sPEEK yang ditambahkan SiO2 naik hingga 5x sedangkan yang ditambahkan H-zeolit hanya 2 kali dari membran sPEEK tanpa aditif. Walaupun membran komposit meningkatkan permeabilitas metanol tetapi nilai tersebut masih dibawah membran Nafion-117. Jadi penambahan aditif yang baik dalam membran berbasis polieter-eter keton tersulfonasi adalah SiO2 yang mempunyai konduktivitas ionik 0,09 S/cm, permeabilitas metanol 10-7 cm2/S dan swelling air 17%.Kata kunci : Aditif, Polieter-Eter Keton, Sci Bahan Bakar Metanol Langsung, SiO,, H-Zeolit


Membranes ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 49
Author(s):  
Sabuj Chandra Sutradhar ◽  
Sujin Yoon ◽  
Taewook Ryu ◽  
Lei Jin ◽  
Wei Zhang ◽  
...  

Polymer membranes, having improved conductivity with enhanced thermal and chemical stability, are desirable for proton exchange membranes fuel cell application. Hence, poly(benzophenone)s membranes (SI-PBP) containing super gas-phase acidic sulfonyl imide groups have been prepared from 2,5-dichlorobenzophenone (DCBP) monomer by C-C coupling polymerization using Ni (0) catalyst. The entirely aromatic C-C coupled polymer backbones of the SI-PBP membranes provide exceptional dimensional stability with rational ion exchange capacity (IEC) from 1.85 to 2.30 mS/cm. The as-synthesized SI-PBP membranes provide enhanced proton conductivity (107.07 mS/cm) compared to Nafion 211® (104.5 mS/cm). The notable thermal and chemical stability of the SI-PBP membranes have been assessed by the thermogravimetric analysis (TGA) and Fenton’s test, respectively. The well distinct surface morphology of the SI-PBP membranes has been confirmed by the atomic force microscopy (AFM). These results of SI-PBP membranes comply with all the requirements for fuel cell applications.


2018 ◽  
Vol 7 (1) ◽  
pp. 7 ◽  
Author(s):  
Dani Permana ◽  
Herlian Eriska Putra ◽  
Djaenudin Djaenudin

Sulfonated polyether ether ketone (SPEEK) was utilized as a proton exchange membrane (PEM) in Microbial Fuel Cell (MFC). The SPEEK performance in producing electricity had been observed in MFC using wastewater and glucose as substrates. The MFC with catering and tofu wastewater produced maximum power density about 0.31 mW/m2 and 0.03 mW/m2, respectively, lower that of MFC with tapioca average power density of 39.4 W/m2 over 48 h. The power density boosted because of the presence of Saccharomyces cerevisiae as inoculum. The study using of S. cerevisiae and Acetobacter acetii, separately, were also conducted in with glucose as substrate. The MFC produced an average power densities were 7.3 and 6.4 mW/m2 for S. cerevisiae and A. acetii, respectively. The results of this study indicated that SPEEK membrane has the potential usage in MFCs and can substitute the commercial membrane, Nafion.Article History: Received: Juni 14th 2017; Received: Sept 25th 2017; Accepted: December 16th 2017; Available onlineHow to Cite This Article: Putra, H.E., Permana, D and Djaenudin, D. (2018) Preliminary Study of the Use of Sulfonated Polyether Ether Ketone (SPEEK) as Proton Exchange Membrane for Microbial Fuel Cell (MFC). International Journal of Renewable Energy Development, 7(1), 7-12.https://doi.org/10.14710/ijred.7.1.7-12


Sign in / Sign up

Export Citation Format

Share Document