scholarly journals Dynamic–Mechanical and Decomposition Properties of Flax/Basalt Hybrid Laminates Based on an Epoxidized Linseed Oil Polymer

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 479
Author(s):  
Dana Luca Motoc ◽  
Jose Miguel Ferri ◽  
Santiago Ferrandiz-Bou ◽  
Daniel Garcia-Garcia ◽  
Rafael Balart

This contribution focuses on the development of flax and flax/basalt hybrid reinforced composites based on epoxidized linseed oil (ELO) resin, exploiting the feasibility of different ratios of glutaric anhydride (GA) to maleinized linseed oil (MLO) in the hardener system (50:0, 40:10 and 30:20 wt.%) to provide crosslinked thermosets with balanced properties. The hybrid laminates have been manufactured by resin transfer molding (RTM) and subjected to dynamic–mechanical (DMA) and thermal gravimetry (TGA) analysis. The presence of glutaric anhydride (GA) resulted in hard and relatively brittle flax and flax/basalt laminates, whose loss moduli decreased as the number of basalt plies diminished. Furthermore, the increase in MLO content in the GA:MLO hardener system shifted the glass transition temperatures (Tg) from 70 °C to 59 and 56 °C, which is representative of a decrease in brittleness of the crosslinked resin. All samples exhibited two stages of their decomposition process irrespective of the MLO content. The latter influenced the residual mass content that increased with the increase of the MLO wt.% from 10 to 30 wt.%, with shifts of the final degradation temperatures from 410 °C to 425 °C and 445 °C, respectively.

Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 716 ◽  
Author(s):  
Vincenzo Fiore ◽  
Carmelo Sanfilippo ◽  
Luigi Calabrese

Over the last decades, natural fiber-reinforced polymer composites (NFRPs) gained great attention in several engineering fields thanks to the reduction of the environmental impact and the end-of-life cost disposal. Unfortunately, the use of NFRPs is limited, mainly due to their weak resistance against humid environments. Since limited literature is available about the evolution of the dynamic mechanical response of NFRPs under aggressive environments, this paper aims to investigate the damping properties of flax, jute and flax/jute epoxy composites exposed to salt-fog up to 60 days. Furthermore, sodium bicarbonate fiber treatment was performed to improve the composites’ durability. The effectiveness of treatment was evidenced for full flax-reinforced composites, whereas no beneficial effect was found for jute composites. Moreover, treated hybrid laminates having outer laminae reinforced with flax showed better damping behavior than their hybrid counterparts during the whole aging campaign.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Priyanka Pandey ◽  
Smita Mohanty ◽  
Sanjay Kumar Nayak

A new approach of oxidation of carbon nanotubes has been used to oxidize the CNTs. A comparative aspect of the mechanical oxidation and acid oxidation process has been established. FTIR analysis and titration method have shown the higher feasibility of the mechanical oxidation method to oxidize the CNTs. Comparatively less damage to the CNTs has been observed in case of mechanically oxidized as compared to acid oxidized CNTs. The mechanical properties of the nanocomposites reinforced with the acid oxidized CNT (ACNT) and mechanically oxidized CNTs (McCNT) were analyzed and relatively higher properties in the nanocomposites reinforced with McCNT were noticed. The less degree of entanglement in the McCNTs was noticed as compared to ACNTs. The dynamic mechanical analysis of the nanocomposites revealed much improved load transfer capability in the McCNT reinforced composites. Further, the rheological properties of the nanocomposites revealed the higher performance of McCNT reinforced composites.


2013 ◽  
Vol 130 (3) ◽  
pp. 1562-1569 ◽  
Author(s):  
Ali Temiz ◽  
Gaye Kose ◽  
Dmitri Panov ◽  
Nasko Terziev ◽  
Mehmet Hakkı Alma ◽  
...  

Holzforschung ◽  
2016 ◽  
Vol 70 (4) ◽  
pp. 305-312 ◽  
Author(s):  
Shengzhen Cai ◽  
Mohamed Jebrane ◽  
Nasko Terziev

Abstract Scots pine sapwood was treated with a new formulation consisting of vinyl acetate (VAc) and epoxidized linseed oil (ELO) catalyzed by potassium persulfate to impart protection to wood. The effects of various curing temperatures, durations, and solution uptakes on dimensional stability (DS) and leachability were studied. The new formulation provided good anti-swelling efficiency (ASE) ranging from 35% to 47% with negligible leaching of the treating agent after four cycles of water soaking and oven drying (2%–2.5%). The extent of polymerization in wood was observed by FTIR-attenuated total reflectance (FTIR-ATR) by evaluation of the areas below typical IR bands as a function of curing temperature and time. Linear relationships were found with high R2 values. The FTIR data of extracted samples were interpreted that chemical reactions took place between the resulting copolymer and wood components.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1158 ◽  
Author(s):  
Pablo Ortiz ◽  
Richard Vendamme ◽  
Walter Eevers

The use of renewable resources for plastic production is an imperious need for the reduction of the carbon footprint and the transition towards a circular economy. With that goal in mind, fully biobased epoxy resins have been designed and prepared by combining epoxidized linseed oil, lignin, and a biobased diamine derived from fatty acid dimers. The aromatic structures in lignin provide hardness and strength to an otherwise flexible and breakable epoxy resin. The curing of the system was investigated by infrared spectroscopy and differential scanning calorimetry (DSC). The influence of the different components on the thermo-mechanical properties of the epoxy resins was analyzed by DSC, thermal gravimetric analysis (TGA), and tensile tests. As the content of lignin in the resin increases, so does the glass transition, the Young’s modulus, and the onset of thermal degradation. This correlation is non-linear, and the higher the percentage of lignin, the more pronounced the effect. All the components of the epoxy resin being commodity chemicals, the present system provides a realistic opportunity for the preparation of fully biorenewable resins at an industrial scale.


Sign in / Sign up

Export Citation Format

Share Document