scholarly journals Ex-Situ Evaluation of Commercial Polymer Membranes for Vanadium Redox Flow Batteries (VRFBs)

Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 926
Author(s):  
Nana Zhao ◽  
Harry Riley ◽  
Chaojie Song ◽  
Zhengming Jiang ◽  
Keh-Chyun Tsay ◽  
...  

Polymer membranes play a vital role in vanadium redox flow batteries (VRFBs), acting as a separator between the two compartments, an electronic insulator for maintaining electrical neutrality of the cell, and an ionic conductor for allowing the transport of ionic charge carriers. It is a major influencer of VRFB performance, but also identified as one of the major factors limiting the large-scale implementation of VRFB technology in energy storage applications due to its cost and durability. In this work, five (5) high-priority characteristics of membranes related to VRFB performance were selected as major considerable factors for membrane screening before in-situ testing. Eight (8) state-of-the-art of commercially available ion exchange membranes (IEMs) were specifically selected, evaluated and compared by a set of ex-situ assessment approaches to determine the possibility of the membranes applied for VRFB. The results recommend perfluorosulfonic acid (PFSA) membranes and hydrocarbon anion exchange membranes (AEMs) as the candidates for further in-situ testing, while one hydrocarbon cation exchange membrane (CEM) is not recommended for VRFB application due to its relatively high VO2+ ion crossover and low mechanical stability during/after the chemical stability test. This work could provide VRFB researchers and industry a valuable reference for selecting the polymer membrane materials before VRFB in-situ testing.

Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 176
Author(s):  
Iñigo Aramendia ◽  
Unai Fernandez-Gamiz ◽  
Adrian Martinez-San-Vicente ◽  
Ekaitz Zulueta ◽  
Jose Manuel Lopez-Guede

Large-scale energy storage systems (ESS) are nowadays growing in popularity due to the increase in the energy production by renewable energy sources, which in general have a random intermittent nature. Currently, several redox flow batteries have been presented as an alternative of the classical ESS; the scalability, design flexibility and long life cycle of the vanadium redox flow battery (VRFB) have made it to stand out. In a VRFB cell, which consists of two electrodes and an ion exchange membrane, the electrolyte flows through the electrodes where the electrochemical reactions take place. Computational Fluid Dynamics (CFD) simulations are a very powerful tool to develop feasible numerical models to enhance the performance and lifetime of VRFBs. This review aims to present and discuss the numerical models developed in this field and, particularly, to analyze different types of flow fields and patterns that can be found in the literature. The numerical studies presented in this review are a helpful tool to evaluate several key parameters important to optimize the energy systems based on redox flow technologies.


2014 ◽  
Vol 43 ◽  
pp. 63-66 ◽  
Author(s):  
Che-Nan Sun ◽  
Zhijiang Tang ◽  
Cami Belcher ◽  
Thomas A. Zawodzinski ◽  
Cy Fujimoto

RSC Advances ◽  
2016 ◽  
Vol 6 (8) ◽  
pp. 6029-6037 ◽  
Author(s):  
Di Lu ◽  
Lele Wen ◽  
Feng Nie ◽  
Lixin Xue

A serials of imidazolium functionalized poly(arylene ether sulfone) as anion exchange membranes (AEMs) for all-vanadium redox flow battery (VRB) application are synthesized successfully in this study.


2021 ◽  
Vol MA2021-01 (27) ◽  
pp. 967-967
Author(s):  
Marcus Gebhard ◽  
Christina Roth ◽  
Maike Schnucklake ◽  
Jonathan Schneider ◽  
Ming Cheng ◽  
...  

2020 ◽  
Vol 35 (S1) ◽  
pp. S24-S28 ◽  
Author(s):  
Christian Lutz ◽  
Ursula Elisabeth Adriane Fittschen

The speciation of vanadium in the electrolyte of vanadium redox flow batteries (VRFBs) is important to determine the state of charge of the battery. To obtain a better understanding of the transport of the different vanadium species through the separator polymer electrolyte membranes, it is necessary to be able to determine concentration and species of the vanadium ions inside the nanoscopic water body of the membranes. The speciation of V in the electrolyte of VRFBs has been performed by others at the synchrotron by X-ray absorption near-edge structure analysis (XANES). However, the concentrations are quite high and not necessarily justify the use of a large-scale facility. Here, we show that vanadium species in the electrolyte and inside the ionomeric membranes can be determined by laboratory XANES. We were able to determine V species in the 1.6 M electrolyte with a measurement time of 2.3 h and V species having a concentration of 9.8 g kg−1 inside the membranes (178 µm thick) with a measurement time of 5 h. Our results show that laboratory XANES is an appropriate tool to study these kind of samples.


2017 ◽  
Vol 5 (33) ◽  
pp. 17388-17400 ◽  
Author(s):  
Sheeraz Mehboob ◽  
Asad Mehmood ◽  
Ju-Young Lee ◽  
Hyun-Jin Shin ◽  
Jinyeon Hwang ◽  
...  

The impact on the performance of all-vanadium redox flow batteries by tin as an electrocatalyst through in situ electrodeposition is investigated.


Sign in / Sign up

Export Citation Format

Share Document