scholarly journals Rheology of Highly Concentrated Suspensions with a Bimodal Size Distribution of Solid Particles for Powder Injection Molding

Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2709
Author(s):  
Anton V. Mityukov ◽  
Vitaly A. Govorov ◽  
Alexander Ya. Malkin ◽  
Valery G. Kulichikhin

Powder injection molding (PIM) is one of the modern and prospective technologies in processing different materials. We proposed to use bimodal compositions of particles for increasing their content in the final products. A set of model suspension of Al with low-molecular-weight poly (ethylene glycol) as a binder based on theoretical arguments concerning the filling capacity of bimodal suspensions was prepared. Studying the rheological properties of these compositions showed that they demonstrate elasto-viscous behavior with significant plasticity that is favorable for the technological process. Using compositions with bimodal distributions allows for increasing the content of the solid phase up to 75 vol. % for PIM technology, which is significantly higher than the standard practical limit. This rheological approach developed for model formulations was applied to processing compositions containing aluminum oxide as typical ceramics and polyolefines as a binder widely used in technological practice. The obtained sintered ceramic samples have quite acceptable mechanical properties of the usual corundum articles.

2020 ◽  
Author(s):  
Elena Glazkova ◽  
Nikolay Rodkevich ◽  
Nikita Toropkov ◽  
Aleksandr Pervikov ◽  
Marat Lerner

2010 ◽  
Vol 103 (4) ◽  
pp. 1145-1151 ◽  
Author(s):  
L. Liu ◽  
N. H. Loh ◽  
B. Y. Tay ◽  
S. B. Tor ◽  
H. Q. Yin ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Fouad Fareh ◽  
Vincent Demers ◽  
Nicole R. Demarquette ◽  
Sylvain Turenne ◽  
Orlando Scalzo

The impact of binders and temperature on the rheological properties of feedstocks used in low-pressure powder injection molding was investigated. Experiments were conducted on different feedstock formulations obtained by mixing Inconel 718 powder with wax-based binder systems. The shear rate sensitivity index and the activation energy were used to study the degree of dependence of shear rate and temperature on the viscosity of the feedstocks. The injection performance of feedstocks was then evaluated using an analytical moldability model. The results indicated that the viscosity profiles of feedstocks depend significantly on the binder constituents, and the secondary binder constituents play an important role in the rheological behavior (pseudoplastic or near-Newtonian) exhibited by the feedstock formulations. Viscosity values as low as 0.06 to 2.9 Pa·s were measured at high shear rates and high temperatures. The results indicate that a feedstock containing a surfactant agent exhibits the best moldability characteristics.


Sign in / Sign up

Export Citation Format

Share Document