scholarly journals Thermocontrolled Reversible Enzyme Complexation-Inactivation-Protection by Poly(N-acryloyl glycinamide)

Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3601
Author(s):  
Pavel I. Semenyuk ◽  
Lidia P. Kurochkina ◽  
Lauri Mäkinen ◽  
Vladimir I. Muronetz ◽  
Sami Hietala

A prospective technology for reversible enzyme complexation accompanied with its inactivation and protection followed by reactivation after a fast thermocontrolled release has been demonstrated. A thermoresponsive polymer with upper critical solution temperature, poly(N-acryloyl glycinamide) (PNAGA), which is soluble in water at elevated temperatures but phase separates at low temperatures, has been shown to bind lysozyme, chosen as a model enzyme, at a low temperature (10 °C and lower) but not at room temperature (around 25 °C). The cooling of the mixture of PNAGA and lysozyme solutions from room temperature resulted in the capturing of the protein and the formation of stable complexes; heating it back up was accompanied by dissolving the complexes and the release of the bound lysozyme. Captured by the polymer, lysozyme was inactive, but a temperature-mediated release from the complexes was accompanied by its reactivation. Complexation also partially protected lysozyme from proteolytic degradation by proteinase K, which is useful for biotechnological applications. The obtained results are relevant for important medicinal tasks associated with drug delivery such as the delivery and controlled release of enzyme-based drugs.

2021 ◽  
Author(s):  
Feiyun Li ◽  
Feiyang Qin ◽  
Yuxia Pang ◽  
Hongming Lou ◽  
Cheng Cai ◽  
...  

In order to reduce the enzyme cost for lignocellulosic enzymatic hydrolysis, the upper critical solution temperature (UCST) additives are used to recover and reuse cellulase by regulating the temperature. A...


Soft Matter ◽  
2021 ◽  
Author(s):  
Aliaksei Aliakseyeu ◽  
Victoria Albright ◽  
Danielle Yarbrough ◽  
Samantha Hernandez ◽  
Qing Zhou ◽  
...  

This work establishes a correlation between the selectivity of hydrogen-bonding interactions and the functionality of micelle-containing layer-by-layer (LbL) assemblies. Specifically, we explore LbL films formed by assembly of poly(methacrylic acid)...


Sign in / Sign up

Export Citation Format

Share Document