scholarly journals Immunomodulatory and Antiprotozoal Potential of Fabricated Sesamum radiatum Oil/Polyvinylpyrrolidone/Au Polymeric Bionanocomposite Film

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4321
Author(s):  
Nawal A. Alarfaj ◽  
Musarat Amina ◽  
Nawal M. Al Musayeib ◽  
Maha F. El-Tohamy ◽  
Gadah A. Al-Hamoud

A unique morphological Sesamum radiatum oil/polyvinylpyrrolidone/gold polymeric bionanocomposite film was synthesized using the S. radiatum oil dispersed in a polymeric polyvinylpyrrolidone (PVP) matrix and decorated with gold nanoparticles (AuNPs). The chemical and physical characteristics as well as the thermal stability of the synthesized bionanocomposite film were investigated using various spectroscopic and microscopic techniques. The microscopic analysis confirmed well dispersed AuNPs in the PVP- S. radiatum oil matrix with particle size of 100 nm. Immunomodulatory and antiprotozoal potentials of the suggested bionanocomposite film were evaluated for lipopolysaccharide-induced BV-2 microglia and against L. amazonensis, L. mexicana promastigotes and T. cruzi epimastigotes, respectively. The results exerted outstanding reduction of inflammatory cytokines’ (IL-6 and TNFα) secretions after pretreatment of bionanocomposite. The bionanocomposite exhibited large inhibitory effects on certain cell signaling components that are related to the activation of expression of proinflammatory cytokines. Additionally, AuNPs and bionanocomposite exhibited excellent growth inhibition of L. mexicana and L. amazonensis promastigotes with IC50 (1.71 ± 1.49, 1.68 ± 0.75) and (1.12 ± 1.10, 1.42 ± 0.69), respectively. However, the nanomaterials showed moderate activity towards T. cruzi. All outcomes indicated promising immunomodulatory, antiprotozoal, and photocatalytic potentials for the synthesized S. radiatum oil/PVP/Au polymeric bionanocomposite.

2016 ◽  
Vol 11 (4) ◽  
pp. 04B310 ◽  
Author(s):  
Robin Capomaccio ◽  
Inês Osório ◽  
Isaac Ojea-Jiménez ◽  
Giacomo Ceccone ◽  
Pascal Colpo ◽  
...  

Author(s):  
Loushambam H. Singh ◽  
Sudhanshu S. Pati ◽  
Maria J. A. Sales ◽  
Edi M. Guimarães ◽  
Aderbal C. Oliveira ◽  
...  

2009 ◽  
Vol 113 (47) ◽  
pp. 20193-20197 ◽  
Author(s):  
Luyun Jiang ◽  
Xing Yin ◽  
Jianwei Zhao ◽  
Hongmei Liu ◽  
Yunhong Liu ◽  
...  

2001 ◽  
Vol 16 (2) ◽  
pp. 478-488 ◽  
Author(s):  
Jianhong He ◽  
Leoanardo Ajdelsztajn ◽  
Enrique J. Lavernia

Nanostructured WC–18% Co powder was synthesized by using cryogenic mechanical milling, and the thermal stability of the nanostructured powder was investigated in detail. The results indicated that the as-synthesized WC–18% Co powder had an average WC particle size of 25 nm. Growth of WC particles occurred above 873 K; however, the average WC particle size remained smaller than 100 nm in the powder isothermally heated for 4 h at 1273 K. Thermal exposure in air at T < 623 K did not result in significant oxidation of the cryomilled powder. The thermal exposure did promote the formation of WO2 and WO3 oxides. The Co6W6C phase was detected by x-ray diffraction in the powder heated in nitrogen at 1273 K, and the phases associated with decarburization of WC, such as W2C, W3C phases, were not observed. With increasing temperature, the dissolution of W and C elements in the Co matrix led to a gradual increase in {111} crystallographic plane spacing, eventually leading to the formation of an amorphous phase.


2014 ◽  
Vol 63 (12) ◽  
pp. 2733-2736 ◽  
Author(s):  
M. Yu. Smirnov ◽  
E. I. Vovk ◽  
A. V. Kalinkin ◽  
E. Yu. Gerasimov ◽  
V. I. Bukhtiyarov

2012 ◽  
Vol 11 (03) ◽  
pp. 1250025
Author(s):  
P. SUJA PREMA RAJINI ◽  
R. MURUGESAN ◽  
S. PERUMAL

Molybdenum trioxide (MoO3) grains were coated with conducting organic polymer of polyaniline. The as-prepared nanocomposite samples were characterized by Fourier transformed infrared (FTIR) spectra, X-ray diffraction (XRD) and Thermogravimetry (TGA). The XRD curves shows that, [Formula: see text] have high crystallinity due to the presence of large number of sharp peaks. From the XRD pattern the particle size is evaluated by using Debye-Scherrer's formula and the average particle size of [Formula: see text] and [Formula: see text] nanocomposites are found to be 46 and 32 nm, respectively. This is clearly observed that the condensed particle size of nanocomposite materials is due to the insertion of metal oxide of molybdenum. The incorporation of metal oxide of MoO3 in polyaniline (Pani) is confirmed by FTIR spectral studies. After de-doping, the characteristic peaks of Pani for all the Pani materials are almost same. This is due to the leaching of metal oxide of MoO3 from Pani. From these observations it is noted that doping–dedoping can also take place in inorganic metal oxides. The thermogram showed a three-step degradation process. The first weight loss step was due to the removal of physisorbed water molecules and moisture. The second minor weight loss step was associated with the removal of dopant from Pani backbone and the slight degradation of benzenoid structure of Pani and their thermal stability is enhanced. The third weight loss step was ascribed to the degradation of quinoid form of Pani. This confirmed the thermal stability of [Formula: see text] nanocomposite system. After degradation above 1000°C, the Pani with MoO3 showed a remaining weight of 8%. This confirmed that incorporation of metal oxide in the Pani nanocomposites is 8%. The enhancement of thermal stability is due to the intercalation of Pani chains into MoO3 in first two step degradation, which is further supported by FTIR and XRD reports. The third step degradation of Pani with MoO3 nanocomposite is loosely bound in organic and inorganic part. Therefore, the organic part is easily decomposed.


Sign in / Sign up

Export Citation Format

Share Document