scholarly journals Techno-Economic Analysis of CO2 Capture Technologies in Offshore Natural Gas Field: Implications to Carbon Capture and Storage in Malaysia

Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 350
Author(s):  
Norhasyima Rahmad Sukor ◽  
Abd Halim Shamsuddin ◽  
Teuku Meurah Indra Mahlia ◽  
Md Faudzi Mat Isa

Growing concern on global warming directly related to CO2 emissions is steering the implementation of carbon capture and storage (CCS). With Malaysia having an estimated 37 Tscfd (Trillion standard cubic feet) of natural gas remains undeveloped in CO2 containing natural gas fields, there is a need to assess the viability of CCS implementation. This study performs a techno-economic analysis for CCS at an offshore natural gas field in Malaysia. The framework includes a gas field model, revenue model, and cost model. A techno-economic spreadsheet consisting of Net Present Value (NPV), Payback Period (PBP), and Internal Rate of Return (IRR) is developed over the gas field’s production life of 15 years for four distinctive CO2 capture technologies, which are membrane, chemical absorption, physical absorption, and cryogenics. Results predict that physical absorption solvent (Selexol) as CO2 capture technology is most feasible with IRR of 15% and PBP of 7.94 years. The output from the techno-economic model and associated risks of the CCS project are quantified by employing sensitivity analysis (SA), which indicated that the project NPV is exceptionally sensitive to gas price. On this basis, the economic performance of the project is reliant on revenues from gas sales, which is dictated by gas market price uncertainties.

Author(s):  
Kostantinos Atsonios ◽  
Antonios Koumanakos ◽  
Kyriakos D. Panopoulos ◽  
Aggelos Doukelis ◽  
Emmanuel Kakaras

Carbon Capture and Storage can either concern the removal of carbon as CO2 in flue gases (post-combustion option) or before its combustion in a Gas Turbine (pre-combustion option). Among the numerous CO2 capture technologies, amine scrubbing (MEA and MDEA), physical absorption (Selexol™ and Rectisol™) and H2 separator membrane reactors are investigated and compared in this study. In the pre-combustion options, the final fuel combusted in the GT is a rich-H2 fuel. Process simulations in ASPEN Plus™ showed that the case of H2 separation with Pd-based membranes has the greatest performance as far as the net efficiency of the energy system is concerned. The economic assessment reveals that the technology is promising in terms of cost of CO2 avoided, provided that the current high membrane costs are reduced.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5074
Author(s):  
Radosław Kaplan ◽  
Michał Kopacz

This study documents the results of economic assessment concerning four variants of coal gasification to hydrogen in a shell reactor. That assessment has been made using discounting methods (NPV: net present value, IRR: internal rate of return), as well as indicators based on a free cash flow to firm (FCFF) approach. Additionally, sensitivity analysis has been carried out, along with scenario analysis in current market conditions concerning prices of hard coal, lignite, hydrogen and CO2 allowances, as well as capital expenditures and costs related to carbon capture and storage (CCS) systems. Based on NPV results, a negative economic assessment has been obtained for all the analyzed variants varying within the range of EUR −903 to −142 million, although the variants based on hard coal achieved a positive IRR (5.1–5.7%) but lower than the assumed discount rates. In Polish conditions, the gasification of lignite seems to be unprofitable, in the assumed scale of total investment outlays and the current price of coal feedstock. The sensitivity analyses indicate that at least a 20% increase of hydrogen price would be required, or a similar reduction of capital expenditures (CAPEX) and costs of operation, for the best variant to make NPV positive. Analyses have also indicated that on the economic basis, only the prices of CO2 allowances exceeding EUR 40/Mg (EUR 52/Mg for lignite) would generate savings due to the availability of CCS systems.


2013 ◽  
Vol 4 (4) ◽  
pp. 315-353 ◽  
Author(s):  
Yuping Huang ◽  
Steffen Rebennack ◽  
Qipeng P. Zheng

Author(s):  
Ioannis Hadjipaschalis ◽  
Costas Christou ◽  
Andreas Poullikkas

In this work, a technical, economic and environmental analysis concerning the use of three major power generation plant types including pulverized coal, integrated gasification combined cycle (IGCC) and natural gas combined cycle, with or without carbon dioxide (CO2) capture and storage (CCS) integration, is carried out. For the analysis, the IPP optimization software is used in which the electricity unit cost and the CO2 avoidance cost from the various candidate power generation technologies is calculated. The analysis indicates that the electricity unit cost of IGCC technology with CCS integration is the least cost option with the lowest CO2 avoidance cost of all candidate technologies with CCS integration. Further investigation concerning the effect of the loan interest rate on the economic performance of the candidate plants revealed that up to a value of loan interest of approximately 5.7%, the IGCC plant with CCS retains the lowest electricity unit cost. Above this level, the natural gas combined cycle plant with post-combustion CCS becomes more economically attractive.


Sign in / Sign up

Export Citation Format

Share Document