scholarly journals Covalently Cross-Linked Nanoparticles Based on Ferulated Arabinoxylans Recovered from a Distiller’s Dried Grains Byproduct

Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 691
Author(s):  
Yubia De Anda-Flores ◽  
Elizabeth Carvajal-Millan ◽  
Jaime Lizardi-Mendoza ◽  
Agustin Rascon-Chu ◽  
Ana Luisa Martínez-López ◽  
...  

The purpose of this investigation was to extract ferulated arabinoxylans (AX) from dried distillers’ grains with solubles (DDGS) plus to investigate their capability to form covalently cross-linked nanoparticles. AX registered 7.3 µg of ferulic acid/mg polysaccharide and molecular weight and intrinsic viscosity of 661 kDa and 149 mL/g, correspondingly. Fourier transform infrared spectroscopy (FTIR) was used to confirm the identity of this polysaccharide. AX formed laccase induced covalent gels at 1% (w/v), which registered an elastic modulus of 224 Pa and a content of FA dimers of 1.5 µg/mg polysaccharide. Scanning electron microscopy pictures of AX gels exhibited a microstructure resembling a rough honeycomb. AX formed covalently cross-linked nanoparticles (NAX) by coaxial electrospray. The average hydrodynamic diameter of NAX determined by dynamic light scattering was 328 nm. NAX presented a spherical and regular shape by transmission electron microscopy analysis. NAX may be an attractive material for pharmaceutical and biomedical applications and an option in sustainable DDGS use.

Author(s):  
Hongyan Xu ◽  
Jing Guo ◽  
Qing Meng ◽  
Zhanling Xie

<i>Morchella</i> is a genus of edible fungi with strong resistance to Cd and the ability to accumulate it in the mycelium. However, the mechanisms conferring Cd resistance in <i>Morchella</i> are unknown. In the present study, morphological and physiological responses to Cd were evaluated in the mycelia of <i>Morchella spongiola</i>. Variations in hyphal micro-morphology including twisting, folding and kinking in mycelia exposed to different Cd concentrations (0.15, 0.9, 1.5, 2.4, 5.0 mg/L) were observed using scanning electron microscopy. Deposition of Cd precipitates on cell surfaces (at Cd concentrations > 2.4 mg/L) was shown by SEM-EDS. Transmission electron microscopy analysis of cells exposed to different concentrations of Cd revealed the loss of intracellular structures and the localization of Cd depositions inside/outside the cell. FTIR analysis showed that functional groups such as C=O, -OH, -NH and -CH could be responsible for Cd binding on the cell surface of <i>M. spongiola</i>. In addition, intracellular accumulation was observed in cultures at low Cd concentrations (< 0.9 mg/L), while extracellular adsorption occurred at higher concentrations. These results provide valuable information on the Cd tolerance mechanism in <i>M. spongiola</i> and constitute a robust foundation for further studies on fungal bioremediation strategies.


Sign in / Sign up

Export Citation Format

Share Document