scholarly journals Design of Cyclone Separator Critical Diameter Model Based on Machine Learning and CFD

Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1521
Author(s):  
Donggeun Park ◽  
Jeung Sang Go

In this paper, the characteristics of the cyclone separator was analyzed from the Lagrangian perspective for designing the important dependent variables. The neural network network model was developed for predicting the separation performance parameter. Further, the predictive performances were compared between the traditional surrogate model and the developed neural network model. In order to design the important parameters of the cyclone separator based on the particle separation theory, the force acting until the particles are separated was calculated using the Lagrangian-based computational fluid dynamics (CFD) methodology. As a result, it was proved that the centrifugal force and drag acting on the critical diameter having a separation efficiency of 50% were similar, and the particle separation phenomenon in the cyclone occurred from the critical diameter, and it was set as an important dependent variable. For developing a critical diameter prediction model based on machine learning and multiple regression methods, unsteady-Reynolds averaged Navier-Stokes analyzes according to shape dimensions were performed. The input design variables for predicting the critical diameter were selected as four geometry parameters that affect the turbulent flow inside the cyclone. As a result of comparing the model prediction performances, the machine learning (ML) model, which takes into account the critical diameter and the nonlinear relationship of cyclone design variables, showed a 32.5% improvement in R-square compared to multi linear regression (MLR). The proposed techniques have proven to be fast and practical tools for cyclone design.

Author(s):  
Donggeun Park ◽  
Jeung Sang Go

This paper deals with the characteristics of the cyclone separator from the Lagrangian perspective to design important dependent variables, develops a neural network model for predicting the separation performance parameter, and compares the predictive performance between the traditional surrogate model and the neural network model. In order to design the important parameters of the cyclone separator based on the particle separation theory, the force acting until the particles are separated was calculated using the Lagrangian-based CFD methodology. As a result, it was proved that the centrifugal force and drag acting on the critical diameter having a separation efficiency of 50% were similar, and the particle separation phenomenon in the cyclone occurred from the critical diameter, and it was set as an important dependent variable. For developing a critical diameter prediction model based on machine learning and multiple regression methods, Unsteady-RANS analyzes according to shape dimensions were performed. The input design variables for predicting the critical diameter were selected as four geometry parameters that affect the turbulent flow inside the cyclone. As a result of comparing the model prediction performances, the ML model showed the 32.5 % of improvement rate of R2 compared to the traditional MLR considering the nonlinear relationship between the cyclone design variable and the critical diameter. The proposed techniques have proven to be fast and practical tools for cyclone design.


2020 ◽  
Vol 8 (10) ◽  
pp. 766
Author(s):  
Dohan Oh ◽  
Julia Race ◽  
Selda Oterkus ◽  
Bonguk Koo

Mechanical damage is recognized as a problem that reduces the performance of oil and gas pipelines and has been the subject of continuous research. The artificial neural network in the spotlight recently is expected to be another solution to solve the problems relating to the pipelines. The deep neural network, which is on the basis of artificial neural network algorithm and is a method amongst various machine learning methods, is applied in this study. The applicability of machine learning techniques such as deep neural network for the prediction of burst pressure has been investigated for dented API 5L X-grade pipelines. To this end, supervised learning is employed, and the deep neural network model has four layers with three hidden layers, and the neural network uses the fully connected layer. The burst pressure computed by deep neural network model has been compared with the results of finite element analysis based parametric study, and the burst pressure calculated by the experimental results. According to the comparison results, it showed good agreement. Therefore, it is concluded that deep neural networks can be another solution for predicting the burst pressure of API 5L X-grade dented pipelines.


2021 ◽  
Vol 72 (1) ◽  
pp. 11-20
Author(s):  
Mingtao He ◽  
Wenying Li ◽  
Brian K. Via ◽  
Yaoqi Zhang

Abstract Firms engaged in producing, processing, marketing, or using lumber and lumber products always invest in futures markets to reduce the risk of lumber price volatility. The accurate prediction of real-time prices can help companies and investors hedge risks and make correct market decisions. This paper explores whether Internet browsing habits can accurately nowcast the lumber futures price. The predictors are Google Trends index data related to lumber prices. This study offers a fresh perspective on nowcasting the lumber price accurately. The novel outlook of employing both machine learning and deep learning methods shows that despite the high predictive power of both the methods, on average, deep learning models can better capture trends and provide more accurate predictions than machine learning models. The artificial neural network model is the most competitive, followed by the recurrent neural network model.


Author(s):  
Olga Uvarova ◽  
Sergey Uvarov

The paper considers a mechanism for constructing a model based on artificial neural network for obtaining the values of the cohesive energy of a system of atoms. Cohesive energy allows for calculation of total energy of system. It is one of the most important characteristics of a structure. A computational experiment is carried out for one-component crystal structures of Si, Ge and C.


Sign in / Sign up

Export Citation Format

Share Document