scholarly journals Research on Local Heating Regeneration Method for Air-Conditioning Systems

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 444
Author(s):  
Feng Cheng ◽  
Yunlei Wu ◽  
Xiuwei Li

Absorption air-conditioning systems have a great advantage in terms of energy conservation and environmental protection. However, the large amount of energy waste in the thermal regeneration process leads to lower efficiency and impedes its development. To reduce energy loss and improve performance, a local heating regeneration method is proposed in this paper. The main principle is reducing the volume of the liquid participating regeneration. Including the solar steam mode, two modes are introduced and configured. Theoretical and experimental research has been made on the new methods. Models have been developed for comparison analysis. Experiments have been conducted on water and absorbent solution with different modes. Performance has been evaluated based on the experimental data. The results expose the influence of different parameters, like liquid volume and solution concentration, on the regeneration process. The local heating method improved the regeneration efficiency by 40% in the no solar steam mode and the performance tripled in the solar steam mode. The COP (the ratio of cooling load to energy consumption) of the absorption system with the solar steam mode is more than two times of that with the traditional regeneration mode. It shows the local heating regeneration method has good potential in future application.

Inventions ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 55
Author(s):  
Victor Mihai ◽  
Liliana Rusu

This article presents a review of the main aspects regarding the current rules of classification societies, standards, and practice regarding the design and construction of ventilation and air conditioning systems for different compartments in different types of ships. In the context of the COVID-19 pandemic, this paper also presents the usual practice of the actual heating ventilation and air conditioning (HVAC) systems used on large ships, which recirculate the air between living compartments, in comparison with the new requirements to avoid the risk of spreading diseases. According to the rules, the technical compartments are provided with independent ventilation systems that ensure high air flow rates; therefore, the spread of diseases through this system is not an issue. The living spaces are provided with common ventilation and air conditioning systems that recirculate the air in all compartments served. The current practice of air recirculation in various living rooms leads to the spread of diseases, which should therefore be analyzed and improved by adding high-efficiency particulate air (HEPA) filters and UV disinfection or be replaced with individual systems that provide local heating or cooling without air recirculation between different rooms and fresh air supply with complete evacuation. For existing ships, different solutions should be analyzed such as reducing or cancelling recirculation and increasing filtration.


2019 ◽  
Vol 6 (3) ◽  
pp. 80-85
Author(s):  
Denis Igorevich Smagin ◽  
Konstantin Igorevich Starostin ◽  
Roman Sergeevich Savelyev ◽  
Anatoly Anatolyevich Satin ◽  
Anastasiya Romanovna Neveshkina ◽  
...  

One of the ways to achieve safety and comfort is to improve on-board air conditioning systems.The use of air cooling machine determines the air pressure high level at the point of selection from the aircraft engine compressor. Because of the aircraft operation in different modes and especially in the modes of small gas engines, deliberately high stages of selection have to be used for ensuring proper operation of the refrigeration machine in the modes of the aircraft small gas engines. Into force of this, most modes of aircraft operation have to throttle the pressure of the selected stage of selection, which, together with the low efficiency of the air cycle cooling system, makes the currently used air conditioning systems energy inefficient.A key feature of the architecture without air extraction from the main engines compressors is the use of electric drive compressors as a source of compressed air.A comparative analysis of competing variants of on-board air conditioning system without air extraction from engines for longrange aircraft projects was performed at the Moscow Aviation Institute (National Research University).The article deals with the main approaches to the decision-making process on the appearance of a promising aircraft on-board air conditioning system at the stage of its conceptual design and formulated the basic requirements for the structure of a complex criterion at different life cycle stages.The level of technical and technological risk, together with a larger installation weight, will require significant costs for development, testing, debugging and subsequent implementation, but at the same time on-board air conditioning system scheme without air extraction from the engines will achieve a significant increase in fuel efficiency at the level of the entire aircraft.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 395
Author(s):  
Feng Cheng ◽  
Boqing Ding ◽  
Xiuwei Li

An absorption air-conditioning system is a good choice for green buildings. It has the superiority in the utilization of renewable energy and the refrigerant is environment-friendly. However, the performance of the traditional absorption system has been restricted by the energy waste in the thermal regeneration process. Capacitive deionization (CDI) regeneration is proposed as a potential method to improve system efficiency. In the new method-based air-conditioning system, strong absorbent solutions and pure water are acquired with the joint work of two CDI units. Nevertheless, the practical CDI device is composed of a lot of CDI units, which is quite different from the theoretical model. To reveal the performance of multiple CDI units, the model of the double/multi-stage CDI system has been developed. Analysis has been made to expose the influence of some key parameters. The results show the double-stage system has better performance than the single-stage system under certain conditions. The coefficient of performance (COP) could exceed 4.5, which is higher than the traditional thermal energy-driven system, or even as competitive as the vapor compression system. More stages with proper voltage distribution better the performance. It also provides the optimization method for the multi-stage CDI system.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 81
Author(s):  
Rongjiang Ma ◽  
Shen Yang ◽  
Xianlin Wang ◽  
Xi-Cheng Wang ◽  
Ming Shan ◽  
...  

Air-conditioning systems contribute the most to energy consumption among building equipment. Hence, energy saving for air-conditioning systems would be the essence of reducing building energy consumption. The conventional energy-saving diagnosis method through observation, test, and identification (OTI) has several drawbacks such as time consumption and narrow focus. To overcome these problems, this study proposed a systematic method for energy-saving diagnosis in air-conditioning systems based on data mining. The method mainly includes seven steps: (1) data collection, (2) data preprocessing, (3) recognition of variable-speed equipment, (4) recognition of system operation mode, (5) regression analysis of energy consumption data, (6) constraints analysis of system running, and (7) energy-saving potential analysis. A case study with a complicated air-conditioning system coupled with an ice storage system demonstrated the effectiveness of the proposed method. Compared with the traditional OTI method, the data-mining-based method can provide a more comprehensive analysis of energy-saving potential with less time cost, although it strongly relies on data quality in all steps and lacks flexibility for diagnosing specific equipment for energy-saving potential analysis. The results can deepen the understanding of the operating data characteristics of air-conditioning systems.


Sign in / Sign up

Export Citation Format

Share Document