scholarly journals Induced EMF THD Reduction Design of Permanent Magnet Synchronous Generators for Diesel Engine Generators

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 986
Author(s):  
Chung-Seong Lee ◽  
Hae-Joong Kim

This paper deals with design of permanent magnet synchronous generators (PMSG) for diesel engine generators. The PMSG is required to reduce the total harmonic distortion (THD) reduction of the induced electromotive force (EMF) for the enhancement of power quality. In this paper, a design method is proposed to reduce the THD of the induced EMF for power quality enhancement in the PMSG. First, the selection process for the number of poles and slots is described. Second, the rotor shape design is proposed using an eccentric curve and slit shape. Based on the results of the first process, the optimal rotor shape is selected to achieve the additional THD reduction of the induced EMF. Finally, the performance for the optimal rotor shape is verified through a 2-dimensional finite element analysis (2D FEA) and prototype.

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Shijun Chen ◽  
Qi Zhang ◽  
Surong Huang

To more efficiently design high performance vehicular permanent magnet motor, an electromagnetic-thermal integration design method is presented, which considers both the electromagnetic properties and the temperature rise of motor winding when determining the main dimensional parameters of the motor. Then a 48-slot and 8-pole vehicular permanent magnet motor is designed with this method. The thermomagnetic coupling design is simulated and validated on the basis of multiphysical domain on finite element analysis. Then the prototype is analyzed and tested on a newly built motor experiment platform. It is shown that the simulation results and experimental results are consistent, which validate the accuracy and effectiveness of the new design method. Also this method is proved to well improve the efficiency of permanent magnet motor design.


Sign in / Sign up

Export Citation Format

Share Document