scholarly journals Influence of Hydrothermal Pretreatment Temperature on the Hydration Properties and Direct Carbonation Efficiency of Al-Rich Ladle Furnace Refining Slag

Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1458
Author(s):  
Yi Huang ◽  
Guo Xiong

The influence of hydrothermal pretreatment temperature on the hydration products and carbonation efficiency of Al-rich LF slag was investigated. The results showed that the carbonation efficiency was strongly dependent on the morphology of hydration products and the hydration extent of the raw slag. Hydrothermal pretreatment at 20 °C or 80 °C favored the formation of flake-shaped products with a higher specific surface area and therefore resulted in a higher CO2 uptake of 20 °C and 80 °C-pretreated slags (13.66 wt% and 10.82 wt%, respectively). However, hydrothermal pretreatment at 40 °C, 60 °C or 100 °C led to the rhombohedral-shaped calcite layer surrounding the unreacted core of the raw slag and the formation of fewer flake-shaped products, resulting in a lower CO2 uptake of 40 °C, 60 °C and 100 °C-pretreated slags (9.21 wt%, 9.83 wt%, and 6.84 wt%, respectively).

2020 ◽  
Vol 29 ◽  
pp. 2633366X2092652 ◽  
Author(s):  
Haiyan Li ◽  
Xianping Wang ◽  
Xuemao Guan ◽  
Dinghua Zou

In this study, LiAl-layered double hydroxides Lithium aluminum hydrotalcite (LiAl-LDH) with different specific surface area were prepared by the separate nucleation and aging steps (SNAS) method and then were employed to prepare calcium sulfoaluminate cement-based grouting material (CBGM) paste. The influence of LiAl-LDH slurries on fresh and hardened properties of the CBGM paste was investigated in terms of fluidity, stability, setting time, and compressive strength. Additionally, the hydration process and hydration products of the CBGM paste were characterized by hydration heat, X-ray diffraction, differential thermal analysis–thermogravimetry, and Fourier transform infrared analyses. The acquired results illustrated that LiAl-LDH with larger specific surface area led to a faster hydration rate at early age, a lower fluidity, a shorter setting time, and a higher stability. Furthermore, due to the crystal nucleation effect, the addition of LiAl-LDH slurries did not cause a new phase to form but changed the morphology and increased the amount of hydration products, yielding higher compressive strength.


2013 ◽  
Vol 19 (1) ◽  
pp. 153-164 ◽  
Author(s):  
Soodabeh Khalili ◽  
Asghar Ghoreyshi ◽  
Mohsen Jahanshahi

this study, the equilibrium adsorption of CO2 on activated charcoal (AC) and multi-walled carbon nanotube (MWCNT) were investigated. Experiments were performed at temperature range of 298-318 K and pressures up to 40 bars. The obtained results indicated that the equilibrium uptakes of CO2 by both adsorbents increased with increasing pressure and decreasing temperature. In spite of lower specific surface area, the maximum amount of CO2 uptake achieved by MWCNT at 298K and 40 bars were twice of CO2 capture by AC (15 mmol.g-1 compared to 7.93 mmol.g-1). The higher CO2 captured by MWCNT can be attributed to its higher pore volume and specific structure of MWCN T such as hollowness and light mass which had greater influence than specific surface area. The experimental data were analyzed by means of Freundlich and Langmuir adsorption isotherm models. Following a simple acidic treatment procedure increased marginally CO2 capture by MWCNT over entire range of pressure, while for AC this effect appeared at higher pressures. Small values of isosteric heat of adsorption were evaluated based on Clausius-Clapeyron equation showed the physical nature of adsorption mechanism. The high amount of CO2 capture by MWCNT renders it as a promising carrier for practical applications such as gas separation.


2019 ◽  
Vol 15 ◽  
pp. 2856-2863 ◽  
Author(s):  
Dandan Fang ◽  
Xiaodong Li ◽  
Meishuai Zou ◽  
Xiaoyan Guo ◽  
Aijuan Zhang

To systematically explore the effects of the synthesis conditions on the porosity of hyper-cross-linked polymers (HCPs), a series of 9-phenylcarbazole (9-PCz) HCPs (P1–P11) has been made by changing the molar ratio of cross-linker to monomer, the reaction temperature T 1, the used amount of catalyst and the concentration of reactants. Fourier transform infrared spectroscopy was utilized to characterize the structure of the obtained polymers. The TG analysis of the HCPs showed good thermal stability. More importantly, a comparative study on the porosity revealed that: the molar ratio of cross-linker to monomer was the main influence factor of the BET specific surface area. Increasing the reaction temperature T 1 or changing the used amount of catalyst could improve the total pore volume greatly but sacrificed a part of the BET specific surface area. Fortunately changing the concentration of reactants could remedy this situation. Slightly changing the concentration of reactants could simultaneously obtain a high surface area and a high total pore volume. The BET specific surface areas of P3 was up to 769 m2 g−1 with narrow pore size distribution and the CO2 adsorption capacity of P11 was up to 52.4 cm3 g−1 (273 K/1.00 bar).


Sign in / Sign up

Export Citation Format

Share Document