scholarly journals Graphite Classification Based on Improved Convolution Neural Network

Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1995
Author(s):  
Guangjun Liu ◽  
Xiaoping Xu ◽  
Xiangjia Yu ◽  
Feng Wang

In the development of high-tech industries, graphite has become increasingly more important. The world has gradually entered the graphite era from the silicon era. In order to make good use of high-quality graphite resources, a graphite classification and recognition algorithm based on an improved convolution neural network is proposed in this paper. Based on the self-built initial data set, the offline expansion and online enhancement of the data set can effectively expand the data set and reduce the risk of deep convolution neural network overfitting. Based on the visual geometry group 16 (VGG16), residual net 34 (ResNet34), and mobile net Vision 2 (MobileNet V2), a new output module is redesigned and loaded into the full connection layer. The improved migration network enhances the generalization ability and robustness of the model; moreover, combined with the focal loss function, the superparameters of the model are modified and trained on the basis of the graphite data set. The simulation results illustrate that the recognition accuracy of the proposed method is significantly improved, the convergence speed is accelerated, and the model is more stable, which proves the feasibility and effectiveness of the proposed method.

2020 ◽  
Vol 2 (2) ◽  
pp. 23
Author(s):  
Lei Wang

<p>As an important research achievement in the field of brain like computing, deep convolution neural network has been widely used in many fields such as computer vision, natural language processing, information retrieval, speech recognition, semantic understanding and so on. It has set off a wave of neural network research in industry and academia and promoted the development of artificial intelligence. At present, the deep convolution neural network mainly simulates the complex hierarchical cognitive laws of the human brain by increasing the number of layers of the network, using a larger training data set, and improving the network structure or training learning algorithm of the existing neural network, so as to narrow the gap with the visual system of the human brain and enable the machine to acquire the capability of "abstract concepts". Deep convolution neural network has achieved great success in many computer vision tasks such as image classification, target detection, face recognition, pedestrian recognition, etc. Firstly, this paper reviews the development history of convolutional neural networks. Then, the working principle of the deep convolution neural network is analyzed in detail. Then, this paper mainly introduces the representative achievements of convolution neural network from the following two aspects, and shows the improvement effect of various technical methods on image classification accuracy through examples. From the aspect of adding network layers, the structures of classical convolutional neural networks such as AlexNet, ZF-Net, VGG, GoogLeNet and ResNet are discussed and analyzed. From the aspect of increasing the size of data set, the difficulties of manually adding labeled samples and the effect of using data amplification technology on improving the performance of neural network are introduced. This paper focuses on the latest research progress of convolution neural network in image classification and face recognition. Finally, the problems and challenges to be solved in future brain-like intelligence research based on deep convolution neural network are proposed.</p>


2019 ◽  
Vol 4 (1) ◽  
pp. 22-27
Author(s):  
Ida Bagus Teguh Teja Murti

The numbers of Balinese script and the low quality of palm leaf manuscripts provide a challenge for testing and evaluation for character recognition. The aim of high accuracy for character recognition of Balinese script,we implementation Deep Convolution Neural Network using SmallerVGG (Visual Geometry Group) Architectur for character recognition on palm leaf manuscripts. We evaluated the performance that methods and we get accuracy 87,23% .


2020 ◽  
Vol 49 (8) ◽  
pp. 20200185
Author(s):  
Odeuk Kwon ◽  
Tae-Hoon Yong ◽  
Se-Ryong Kang ◽  
Jo-Eun Kim ◽  
Kyung-Hoe Huh ◽  
...  

Objectives: The purpose of this study was to automatically diagnose odontogenic cysts and tumors of both jaws on panoramic radiographs using deep learning. We proposed a novel framework of deep convolution neural network (CNN) with data augmentation for detection and classification of the multiple diseases. Methods: We developed a deep CNN modified from YOLOv3 for detecting and classifying odontogenic cysts and tumors of both jaws. Our data set of 1282 panoramic radiographs comprised 350 dentigerous cysts (DCs), 302 periapical cysts (PCs), 300 odontogenic keratocysts (OKCs), 230 ameloblastomas (ABs), and 100 normal jaws with no disease. In addition, the number of radiographs was augmented 12-fold by flip, rotation, and intensity changes. We evaluated the classification performance of the developed CNN by calculating sensitivity, specificity, accuracy, and area under the curve (AUC) for diseases of both jaws. Results: The overall classification performance for the diseases improved from 78.2% sensitivity, 93.9% specificity,91.3% accuracy, and 0.86 AUC using the CNN with unaugmented data set to 88.9% sensitivity, 97.2% specificity, 95.6% accuracy, and 0.94 AUC using the CNN with augmented data set. CNN using augmented data set had the following sensitivities, specificities, accuracies, and AUCs: 91.4%, 99.2%, 97.8%, and 0.96 for DCs, 82.8%, 99.2%, 96.2%, and 0.92 for PCs, 98.4%,92.3%,94.0%, and 0.97 for OKCs, 71.7%, 100%, 94.3%, and 0.86 for ABs, and 100.0%, 95.1%, 96.0%, and 0.97 for normal jaws, respectively. Conclusion: The CNN method we developed for automatically diagnosing odontogenic cysts and tumors of both jaws on panoramic radiographs using data augmentation showed high sensitivity, specificity, accuracy, and AUC despite the limited number of panoramic images involved.


Author(s):  
Yiming Guo ◽  
Hui Zhang ◽  
Zhijie Xia ◽  
Chang Dong ◽  
Zhisheng Zhang ◽  
...  

The rolling bearing is the crucial component in the rotating machinery. The degradation process monitoring and remaining useful life prediction of the bearing are necessary for the condition-based maintenance. The commonly used deep learning methods use the raw or processed time domain data as the input. However, the feature extracted by these approaches is insufficient and incomprehensive. To tackle this problem, this paper proposed an improved Deep Convolution Neural Network with the dual-channel input from the time and frequency domain in parallel. The proposed methodology consists of two stages: the incipient failure identification and the degradation process fitting. To verify the effectiveness of the method, the IEEE PHM 2012 dataset is adopted to compare the proposed method and other commonly used approaches. The results show that the improved Deep Convolution Neural Network can effectively describe the degradation process for the rolling bearing.


Sign in / Sign up

Export Citation Format

Share Document