scholarly journals Ultrasound-Assisted Multi-Enzymatic System for the Preparation of ACE Inhibitory Peptides with Low Bitterness from Corn Gluten Meal

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2170
Author(s):  
Shanfen Huang ◽  
Yunliang Li ◽  
Chengliang Li ◽  
Siyu Ruan ◽  
Wenjuan Qu ◽  
...  

The promising angiotensin converting enzyme (ACE) inhibitory peptides derived from corn protein usually have strong bitterness and thus limit their use among consumers. To prepare ACE inhibitory peptides with low bitterness, two energy-efficient types of ultrasound pretreatment were introduced into the multi-enzymatic system of corn gluten meal. The results showed that Flavourzyme–Protamex sequential enzymolysis produced the peptides with high ACE inhibitory activity and the lowest bitterness compared with other enzymolysis conditions. During the optimized sequential enzymolysis, the divergent ultrasound pretreatment with a frequency of 40 kHz for 60 min exhibited higher ACE inhibitory activity (65.36%, accounting for 73.84% of the highest ACE inhibitory activity) and lower bitterness intensity of peptides, compared with an energy-gathered ultrasound. The results of the study showed that, on the one hand, divergent ultrasound pretreatment induced the highest intrinsic fluorescence of protein, with more hydrophobic amino acid residues exposed for cleavage by exopeptidases, which leads to a reduction in bitterness. On the other hand, the amino acid composition analysis proved that more Tyr, Ile, and Val moieties, instead of Leu (bitterest substance), and more peptide fractions with a molecular weight >1000 Da should be the structural features of high ACE inhibitory peptides.

2003 ◽  
Vol 69 (9) ◽  
pp. 5297-5305 ◽  
Author(s):  
F. Minervini ◽  
F. Algaron ◽  
C. G. Rizzello ◽  
P. F. Fox ◽  
V. Monnet ◽  
...  

ABSTRACT Sodium caseinates prepared from bovine, sheep, goat, pig, buffalo or human milk were hydrolyzed by a partially purified proteinase of Lactobacillus helveticus PR4. Peptides in each hydrolysate were fractionated by reversed-phase fast-protein liquid chromatography. The fractions which showed the highest angiotensin I-converting-enzyme (ACE)-inhibitory or antibacterial activity were sequenced by mass spectrum and Edman degradation analyses. Various ACE-inhibitory peptides were found in the hydrolysates: the bovine αS1-casein (αS1-CN) 24-47 fragment (f24-47), f169-193, and β-CN f58-76; ovine αS1-CN f1-6 and αS2-CN f182-185 and f186-188; caprine β-CN f58-65 and αS2-CN f182-187; buffalo β-CN f58-66; and a mixture of three tripeptides originating from human β-CN. A mixture of peptides with a C-terminal sequence, Pro-Gly-Pro, was found in the most active fraction of the pig sodium caseinate hydrolysate. The highest ACE-inhibitory activity of some peptides corresponded to the concentration of the ACE inhibitor (S)-N-(1-[ethoxycarbonyl]-3-phenylpropyl)-ala-pro maleate (enalapril) of 49.253 μg/ml (100 μmol/liter). Several of the above sequences had features in common with other ACE-inhibitory peptides reported in the literature. The 50% inhibitory concentration (IC50) of some of the crude peptide fractions was very low (16 to 100 μg/ml). Some identified peptides were chemically synthesized, and the ACE-inhibitory activity and IC50s were confirmed. An antibacterial peptide corresponding to β-CN f184-210 was identified in human sodium caseinate hydrolysate. It showed a very large spectrum of inhibition against gram-positive and -negative bacteria, including species of potential clinical interest, such as Enterococcus faecium, Bacillus megaterium, Escherichia coli, Listeria innocua, Salmonella spp., Yersinia enterocolitica, and Staphylococcus aureus. The MIC for E. coli F19 was ca. 50 μg/ml. Once generated, the bioactive peptides were resistant to further degradation by proteinase of L. helveticus PR4 or by trypsin and chymotrypsin.


2017 ◽  
Vol 3 (4) ◽  
pp. 231-240 ◽  
Author(s):  
A. Cito ◽  
M. Botta ◽  
V. Francardi ◽  
E. Dreassi

Hypertension is well known as one of the major risk for cardiovascular diseases which annually affect millions of people. The angiotensin converting enzyme (ACE) plays a key role in blood pressure regulation process. Indeed, hypertension treatment by synthetic ACE inhibitors (e.g. captopril, lisinopril and ramipril) is effective; however, their use can cause serious side effects, such as hypotension, cough, reduced renal function and angioedema. Thus, research was focused on natural ACE inhibitory peptides sources such as foodstuffs and also, more recently, edible insects. In the last decades, ACE inhibitory activity has been detected in protein hydrolysates from insect species belonging to the orders of Coleoptera, Diptera, Hymenoptera, Lepidoptera and also Orthoptera. Further investigations led to identify specific ACE inhibitory peptides from the silkworm Bombyx mori (Lepidoptera: Bombycidae), the yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae), the cotton leafworm Spodoptera littoralis (Lepidoptera: Noctuidae) and also from the weaver ant Oecophylla smaragdina (Hymenoptera: Formicidae). Even if ACE inhibitory activity of these bioactive peptides has been in vitro assayed and is comparable to those of some bioactive peptides derived from other animal protein sources, the in vivo effectiveness of most of these bioactive peptides still needs to be confirmed. The aim of this review is to present an outline of the currently available data on the potential use of insects for hypertension treatment with a focus on the ACE inhibitory peptides identified in these invertebrates to date.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Ronghai He ◽  
Haile Ma ◽  
Weirui Zhao ◽  
Wenjuan Qu ◽  
Jiewen Zhao ◽  
...  

A quantitative structure-activity relationship (QSAR) model of angiotensin-converting enzyme- (ACE-) inhibitory peptides was built with an artificial neural network (ANN) approach based on structural or activity data of 58 dipeptides (including peptide activity, hydrophilic amino acids content, three-dimensional shape, size, and electrical parameters), the overall correlation coefficient of the predicted versus actual data points is , and the model was applied in ACE-inhibitory peptides preparation from defatted wheat germ protein (DWGP). According to the QSAR model, the C-terminal of the peptide was found to have principal importance on ACE-inhibitory activity, that is, if the C-terminal is hydrophobic amino acid, the peptide's ACE-inhibitory activity will be high, and proteins which contain abundant hydrophobic amino acids are suitable to produce ACE-inhibitory peptides. According to the model, DWGP is a good protein material to produce ACE-inhibitory peptides because it contains 42.84% of hydrophobic amino acids, and structural information analysis from the QSAR model showed that proteases of Alcalase and Neutrase were suitable candidates for ACE-inhibitory peptides preparation from DWGP. Considering higher DH and similar ACE-inhibitory activity of hydrolysate compared with Neutrase, Alcalase was finally selected through experimental study.


2014 ◽  
Vol 81 (4) ◽  
pp. 385-393 ◽  
Author(s):  
Francisco Javier Espejo-Carpio ◽  
Raúl Pérez-Gálvez ◽  
María del Carmen Almécija ◽  
Antonio Guadix ◽  
Emilia M. Guadix

A global process for the production of goat milk hydrolysates enriched in angiotensin converting enzyme (ACE) inhibitory peptides was proposed. Firstly, the protein fractions (caseins and whey proteins) were separated by ultrafiltration through a 0·14 μm ceramic membrane. The casein fraction obtained in the retentate stream of the above filtration step was subsequently hydrolysed with a combination of subtilisin and trypsin. After 3 h of reaction, the hydrolysate produced presented an IC50 of 218·50 μg/ml, which represent a relatively high ACE inhibitory activity. Finally, this hydrolysate was filtered through a 50 kDa ceramic membrane until reaching a volume reduction factor of 3. The permeate produced presented an improvement of more than 30% in the ACE inhibitory activity. In contrast, the retentate was concentrated in larger and inactive peptides which led to a decrease of more than 80% in its inhibitory activity. The process suggested in this work was suitable to obtain a potent ACE inhibitory activity product able to be incorporated into food formulas intended to control or lower blood pressure. Moreover, the liquid product could be easily stabilised by spray dried if it would be necessary.


2020 ◽  
Vol 16 (2) ◽  
pp. 47 ◽  
Author(s):  
Suci Apsari Pebrianti ◽  
Muhammad Nur Cahyanto ◽  
Retno Indrati

Fermentation products are common sources of angiotensin I-converting enzyme (ACE) inhibitory peptides used for hypertension treatment. This research investigated the effect of fermentation time on the ACE inhibitory activity produced during the fermentation of pigeon pea tempe and aimed to determine the optimal fermentation time to obtain pigeon pea tempe with the highest ACE inhibitory activity. Seeds were inoculated with Raprima® (0.02% w/w) containing Rhizopus oligosporus spores and fermented for 0-96 h. Protein pattern, degree of hydrolysis (DH), soluble protein content and ACE inhibitory activity were observed during fermentation. The result from SDS-PAGE shows that protein hydrolysis occurred after 12 h fermentation, marked by the appearance and greater intensity of protein bands with low-molecular-weight (60 kDa). An increase in DH and soluble protein content were detected during the fermentation and reached a maximum of 23.99% and 3.15 mg mL -1 at 96 h fermentation, respectively. The ACE inhibitory activity increased with fermentation time and pigeon pea tempe fermented for 48 h (76.14%) has the highest ACE inhibitory activity with IC 50 values of 0.65 mg mL -1 . It could be concluded that the optimal fermentation time to obtained pigeon pea tempe with the highest ACE inhibitory activity is for 48 h of fermentation.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhipeng Yu ◽  
Yang Chen ◽  
Wenzhu Zhao ◽  
Fuping Zheng ◽  
Long Ding ◽  
...  

AbstractFood-derived ACE inhibitory peptides have recently attracted increased attention. This work focused on a more efficient in silico method to find ACE inhibitory peptides from ovotransferrin. In this work, ovotransferrin was digested into peptides by virtual enzymolysis. Subsequently, in vitro ACE inhibitory activity of potential tripeptides was conducted following the peptide score, toxicity, and water solubility prediction. Both pharmacophore study and flexible docking were applied to analyze ACE inhibition mechanism of tripeptides. Our results demonstrated that EWL was a potent ACE inhibitory tripeptide with IC50 value of 380 ± 10 μM. Besides, pharmacophore and flexible docking showed that the pi interaction and hydrogen bond were the key interactions in ACE-EWL complex. It appears that the in vitro ACE inhibitory activity of tripeptide EWL was consistent with its molecular modeling.


Marine Drugs ◽  
2018 ◽  
Vol 16 (8) ◽  
pp. 271 ◽  
Author(s):  
Jianpeng Li ◽  
Zunying Liu ◽  
Yuanhui Zhao ◽  
Xiaojie Zhu ◽  
Rilei Yu ◽  
...  

Natural angiotensin converting enzyme (ACE)-inhibitory peptides, which are derived from marine products, are useful as antihypertensive drugs. Nevertheless, the activities of these natural peptides are relatively low, which limits their applications. The aim of this study was to prepare efficient ACE-inhibitory peptides from sea cucumber-modified hydrolysates by adding exogenous proline according to a facile plastein reaction. When 40% proline (w/w, proline/free amino groups) was added, the modified hydrolysates exhibited higher ACE-inhibitory activity than the original hydrolysates. Among the modified hydrolysates, two novel efficient ACE-inhibitory peptides, which are namely PNVA and PNLG, were purified and identified by a sequential approach combining a sephadex G-15 gel column, reverse-phase high-performance liquid chromatography (RP-HPLC) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS), before we conducted confirmatory studies with synthetic peptides. The ACE-inhibitory activity assay showed that PNVA and PNLG exhibited lower IC50 values of 8.18 ± 0.24 and 13.16 ± 0.39 μM than their corresponding truncated analogs (NVA and NLG), respectively. Molecular docking showed that PNVA and PNLG formed a larger number of hydrogen bonds with ACE than NVA and NLG, while the proline at the N-terminal of peptides can affect the orientation of the binding site of ACE. The method developed in this study may potentially be applied to prepare efficient ACE-inhibitory peptides, which may play a key role in hypertension management.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Jin-Chao Wu ◽  
Jie Cheng ◽  
Xiao-lai Shi

The angiotensin-I-converting enzyme (ACE) inhibitory peptides from mussel,Mytilus coruscus, were investigated and the variable factors, protease concentration, hydrolysis time, pH, and temperature, were optimized using Uniform Design, a new statistical experimental method. The results proved that the hydrolysate of alkali proteases had high ACE-inhibitory activity, especially the alkali protease E1. Optimization by Uniform Design showed that the best hydrolysis conditions for preparation of ACE-inhibitory peptides fromMytilus coruscuswere protease concentration of 36.0 U/mL, hydrolysis time of 2.7 hours, pH 8.2, and Temperature at 59.5°C, respectively. The verification experiments under optimum conditions showed that the ACE-inhibitory activity (91.3%) were agreed closely with the predicted activity of 90.7%. The amino acid composition analysis ofMytilus coruscusACE-inhibitory peptides proved that it had high percent of lysine, leucine, glycine, aspartic acid, and glutamic acid.


2016 ◽  
Vol 20 (1) ◽  
pp. 77-84 ◽  
Author(s):  
Chunju Bao ◽  
He Chen ◽  
Li Chen ◽  
Jili Cao ◽  
Jiangpeng Meng

Abstract Angiotensin I converting enzyme (ACE) inhibitory peptides derived from milk proteins have obvious effect of lowering blood pressure, safe and non-toxic side effects. This study compared four commercial proteases, namely alcalase, flavourzyme, neutral protease and proteinase K for their ACE inhibitory activity in skimmed goat and cow milk and identified the best one with higher ACE inhibitory activity. The degree of hydrolysis (DH) of alcalase and proteinase K were much higher than flavourzyme, neutral protease for both skimmed goat and cow milk. Alcalase was the best enzyme to produce ACE inhibitory peptides from goat milk, with the ACE inhibitory activity 95.31%, while proteinase K was the optimal protease for hydrolyzing cow milk, with 81.28% ACE inhibitory activity. Furthermore, no correlation was obtained between the ACE inhibitory activity and DH for both goat and cow milk.


Sign in / Sign up

Export Citation Format

Share Document