scholarly journals Position Output Adaptive Backstepping Control of Electro-Hydraulic Servo Closed-Pump Control System

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2209
Author(s):  
Gexin Chen ◽  
Huilong Liu ◽  
Pengshuo Jia ◽  
Gengting Qiu ◽  
Haohui Yu ◽  
...  

A nonlinear adaptive backstepping control method was proposed to address the system parameter uncertainty problem in the position control process of an electro-hydraulic servo closed-pump control system. This control strategy fully considers the parameter uncertainty of the nonlinear system and establishes the adaptive rate of the uncertain parameter to adjust the parameter disturbance online in real time, thereby improving the accuracy and robustness of the control system. A pump control system experiment platform was used to verify the feasibility of the controller. The experimental results showed that the proposed control strategy provided a good control effect. The pump control system can be controlled with high precision, with a steady-state control accuracy of ±0.02 mm, which serves as a good foundation for the engineering application and promotion of the pump control system.

2018 ◽  
Vol 2018 ◽  
pp. 1-19
Author(s):  
Le Liang ◽  
Yanjie Liu ◽  
Hao Xu

Multiobjective trajectory optimization and adaptive backstepping control method based on recursive fuzzy wavelet neural network (RFWNN) are proposed to solve the problem of dynamic modeling uncertainties and strong external disturbance of the rubber unstacking robot during recycling process. First, according to the rubber viscoelastic properties, the Hunt-Crossley nonlinear model is used to construct the robot dynamics model. Then, combined with the dynamic model and the recycling process characteristics, the multiobjective trajectory optimization of the rubber unstacking robot is carried out for the operational efficiency, the running trajectory smoothness, and the energy consumption. Based on the trajectory optimization results, the adaptive backstepping control method based on RFWNN is adopted. The RFWNN method is applied in the main controller to cope with time-varying uncertainties of the robot dynamic system. Simultaneously, an adaptive robust control law is developed to eliminate inevitable approximation errors and unknown disturbances and relax the requirement for prior knowledge of the controlled system. Finally, the validity of the proposed control strategy is verified by experiment.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3528 ◽  
Author(s):  
Chujia Guo ◽  
Aimin Zhang ◽  
Hang Zhang ◽  
Lei Zhang

This study aims to address the inherent uncertainty in plug loads and load extraction, distributed generation, and the inevitable circulating current in a parallel structure. Therefore, in this paper, an adaptive backstepping control scheme with an online parameter estimator (OPE) for a plug-and-play parallel converter system in a four-port power switcher is proposed. The adaptive backstepping control method was designed in the dq0 coordinate system to suppress the circulating current in the zero-component; the circulating current can be suppressed by using an embedded algorithm and omitting the extra controller. An adaptive update law was designed to weaken the influence of the arbitrary plug and extraction operations in the DC and AC buses to realize the plug-and-play function. The transient tracking performance is governed by the limitation of maximum total errors in the voltage and current. As a result, the settling times of the voltage, current, and power decreased. Additionally, to further improve the system robustness, an online inductance and resistance estimator was established using an optimal algorithm that solves the weighted least squares problem. In the estimator, there are no additional voltage and current sensors needed, and the mean squared error (MSE) of the estimation can be minimized. Simulation studies on a two-converter parallel system with a plug-and-play function were conducted using MATLAB/SIMULINK (R2018b, MathWorks, Natick, MA, USA) to verify the effectiveness of the proposed adaptive backstepping control strategy. The results show that this strategy improves system performance over that of a system with unbalanced parameters among a parallel structure with AC and DC system disturbances caused by arbitrary plug and extraction operations.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Zhiqiang Jia ◽  
Tianya Li ◽  
Kunfeng Lu

In this paper, an adaptive backstepping control strategy is presented to solve the longitudinal control problem for a hypersonic vehicle (HSV) subject to actuator saturation and disturbances. Small perturbation linearization transforms the dynamics to a seconded-order system at each trimming point, with total disturbance including unmodeled dynamics, parametric uncertainties, and external disturbances. The disturbance can be estimated and compensated for by an extended state observer (ESO), and thus the system is decoupled. To deal with the actuator saturation and wide flight envelope, an adaptive backstepping control strategy is designed. A rigorous proof of finite-time convergence is provided applying Lyapunov method. The effectiveness of the proposed control scheme is verified in simulations.


2020 ◽  
Vol 13 (4) ◽  
pp. 366-377 ◽  
Author(s):  
Bingwei Gao ◽  
Yongtai Ye

Background: In some applications, the requirements of electro-hydraulic servo system are not only precise positioning, but also the speediness capability at which the actuator is operated. Objective: In order to enable the system to achieve rapid start and stop during the work process, reduce the vibration and impact caused by the change of the velocity, at the same time improve the positioning accuracy, and further strengthen the stability and the work efficiency of the system, it is necessary to perform the synergistic control between the position and the velocity of the electrohydraulic servo system. Methods: In order to achieve synergistic control between the position and the velocity, a control method of velocity feed-forward and position feedback is adopted. That is, based on the position control, the speed feed-forward is added to the outer loop as compensation. The position control adopts the PID controller, and the velocity control adopts the adaptive fuzzy neural network controller. At the same time, the position and velocity sensors are used for feedback, and the deviation signals between the position and the velocity obtained by superimposing the feedback are used as the final input of the control object, thereby controlling the whole system. Results: The control effect of the designed position / velocity synergistic controller is verified by simulation and experiment. The results show that the designed controller can effectively reduce the vibration and impact caused by the change of the velocity, and greatly improve the response velocity and the position accuracy of the system. Conclusion: The proposed method provides technical support for multi-objective synergistic control of the electro-hydraulic servo system, completes the requirements of multi-task operation, improves the positioning accuracy and response velocity of the electro-hydraulic servo system, and realizes the synergy between the position and the velocity. In this article, various patents have been discussed.


Sign in / Sign up

Export Citation Format

Share Document