scholarly journals Centrality Dependence of Deuteron Production in PbPb Collisions at 2.76 TeV via Hydrodynamics and Hadronic Afterburner +

Proceedings ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Dmytro Oliinychenko ◽  
Long-Gang Pang ◽  
Hannah Elfner ◽  
Volker Koch

The deuteron binding energy is only 2.2 MeV. At the same time, its yield in Pb+Pb collisionsatpsNN = 2.76 TeV corresponds to a thermal yield at the temperature around 155 MeV, which is toohot to keep deuterons bound. This puzzle is not completely resolved yet. In general, the mechanism oflight nuclei production in ultra-high energy heavy ion collisions remains under debate. In a previouswork we suggest a microscopic explanation of the deuteron production in central ultra-relativisticPb+Pb collisions, the main mechanism being ppn $ pd reactions in the hadronic phase of thecollision. We use a state-of-the-art hybrid approach, combining relativistic hydrodynamics for the hotand dense stage and hadronic transport for a later, more dilute stage. Deuteron rescattering in thehadronic stage is implemented explicitly, using its experimentally measured vacuum cross-sections.In these proceedings we extend our previous work to non-central collisions, keeping exactly thesame methodology and parameters. We find that our approach leads to a good description of themeasured deuteron transverse momentum spectra at centralities up to 40%, and underestimatesthe amount of deuterons at low transverse momentum at higher centralities. Nevertheless, thecoalescence parameter B2, measured by ALICE collaboration, is reproduced well in our approacheven for peripheral collisions.

2002 ◽  
Vol 17 (30) ◽  
pp. 4615-4634 ◽  
Author(s):  
BHASKAR DE ◽  
S. BHATTACHARYYA ◽  
P. GUPTAROY

The present paper aims at testing a very simple approach to interpret the characteristics of inclusive production of pions in high energy NA and AA collisions by a somewhat in-depth analysis of the same for NN interactions; and also at reporting here thus some interesting observations made on the nature of rapidity and transverse momentum spectra of the produced pions. And this approach is built upon a newly offered master formula holding the key for converting the results of high energy nucleon–nucleon (NN) collision to the corresponding observables on differential and inclusive cross-sections for both nucleon–nucleus and nucleus–nucleus (heavy ion) collisions in a generalized form. The proposed formulae, used in a somewhat phenomenological way, can provide modestly reliable parametrization of data in the broad range of collision energy and the varied range of projectile-target combinations. This opens up the possibility of understanding in a quite unified manner the large amount of data on the rapidity and transverse momentum spectra in a wide range of interactions and energies starting right from ISR, rather Bevelac, to the relativistic heavy ion collisions (RHIC) via the various collider scales of energy. The agreements between the data and calculations, in most cases, are quite satisfactory both qualitatively and quantitatively. While highlighting this success, the limitation of the approach has also been pointed out in the end as clearly and categorically as possible.


2021 ◽  
Vol 136 (6) ◽  
Author(s):  
Rajendra Nath Patra ◽  
Bedangadas Mohanty ◽  
Tapan K. Nayak

AbstractThe thermodynamic properties of matter created in high-energy heavy-ion collisions have been studied in the framework of the non-extensive Tsallis statistics. The transverse momentum ($$p_\mathrm{T}$$ p T ) spectra of identified charged particles (pions, kaons, protons) and all charged particles from the available experimental data of Au-Au collisions at the Relativistic Heavy Ion Collider (RHIC) energies and Pb-Pb collisions at the Large Hadron Collider (LHC) energies are fitted by the Tsallis distribution. The fit parameters, q and T, measure the degree of deviation from an equilibrium state and the effective temperature of the thermalized system, respectively. The $$p_\mathrm{T}$$ p T  spectra are well described by the Tsallis distribution function from peripheral to central collisions for the wide range of collision energies, from $$\sqrt{s_\mathrm{NN}}$$ s NN = 7.7 GeV to 5.02 TeV. The extracted Tsallis parameters are found to be dependent on the particle species, collision energy, centrality, and fitting ranges in $$p_\mathrm{T}$$ p T . For central collisions, both q and T depend strongly on the fit ranges in $$p_\mathrm{T}$$ p T . For most of the collision energies, q remains almost constant as a function of centrality, whereas T increases from peripheral to central collisions. For a given centrality, q systematically increases as a function of collision energy, whereas T has a decreasing trend. A profile plot of q and T with respect to collision energy and centrality shows an anti-correlation between the two parameters.


2007 ◽  
Vol 16 (06) ◽  
pp. 1687-1700 ◽  
Author(s):  
BHASKAR DE ◽  
S. BHATTACHARYYA ◽  
GOUTAM SAU ◽  
S. K. BISWAS

In the light of ideas of the nonextensive thermodynamics, we have analyzed here the transverse momentum spectra of pions and protons produced at different centralities in the interactions of P+P, D+Au and Au+Au interactions, all of them at [Formula: see text] GeV at RHIC-BNL. Comparison of the results and the comments thereon have also been made with indications of suitable hints to the physical import and implications. The overall impact and the utility of the approach along with the obtained results are discussed in detail.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Muhammad Waqas ◽  
Fu-Hu Liu ◽  
Zafar Wazir

Centrality-dependent double-differential transverse momentum spectra of negatively charged particles (π−, K−, and p¯) at the mid(pseudo)rapidity interval in nuclear collisions are analyzed by the standard distribution in terms of multicomponent. The experimental data measured in gold-gold (Au-Au) collisions by the PHENIX Collaboration at the Relativistic Heavy Ion Collider (RHIC) and in lead-lead (Pb-Pb) collisions by the ALICE Collaboration at the Large Hadron Collider (LHC) are studied. The effective temperature, initial temperature, kinetic freeze-out temperature, transverse flow velocity, and kinetic freeze-out volume are extracted from the fitting to transverse momentum spectra. We observed that the mentioned five quantities increase with the increase of event centrality due to the fact that the average transverse momentum increases with the increase of event centrality. This renders that larger momentum (energy) transfer and further multiple scattering had happened in central centrality.


Sign in / Sign up

Export Citation Format

Share Document