scholarly journals Characterising Charm Jet Properties with Azimuthal Correlations of D Mesons and Charged Particles with ALICE at the LHC

Proceedings ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 35
Author(s):  
Shyam Kumar for the ALICE Collaboration

Charm quarks are produced via hard parton scattering in ultra-relativistic heavy-ion collisions, hence are ideal probes to study a possible de-confined state of matter, known as Quark Gluon Plasma (QGP). The angular correlation of a meson containing a charm quark with other charged particles in heavy-ion collisions can help in studying the properties of QGP. Similar studies in pp collisions can give insight about the charm production mechanism while in p-Pb collisions could provide essential information to disentangle final-state QGP-induced modifications from effects caused by cold nuclear matter. In this proceedings, the results are presented for p-Pb collisions at s NN = 5.02 TeV and pp collisions at s = 13 TeV, so far the highest available energy at the LHC. The results are compared with Monte Carlo (MC) simulations using PYTHIA and POWHEG event generators and with pp collision results at s = 7 TeV.

2007 ◽  
Vol 16 (07n08) ◽  
pp. 2061-2065
Author(s):  
BIN ZHANG

J/ψ production is closely related to the production of the strongly interacting Quark-Gluon Plasma (sQGP) in relativistic heavy ion collisions. To study the effects of charm quark dynamics on J/ψ production, the phase space distributions of charm and anti-charm quarks are generated using A Multi-Phase Transport (AMPT) model. These charm quarks then coalesce into J/ψ particles. The production and flow of J/ψ show strong sensitivity to final state charm interactions. The results are compared to charm quark and D meson results from the AMPT model and recent predictions from other models.


Universe ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 13
Author(s):  
Leonard S. Kisslinger

This is a review of the production of heavy quark states via relativistic heavy ion collisions in RHIC. The heavy quarks here are c, charm quark, and b, bottom quark. The states are charmonium meson states Ψ ( n S ) , with n = 1,2 and upsilon meson states Υ ( m S ) , with m = 1,2,3. Quantum Chromodynamics (QCD) sum rules were used to derive the result that the Ψ ( 2 S ) and Υ ( 3 S ) are mixed hybrid states, which increase their production cross sections. We also review the Ψ ( n S ) and Υ ( m S ) production cross sections via Cu-Cu and Au-Au collisions, which are very important for this review of the production of heavy quark states in RHIC. The possible detection of the Quark Gluon Plasma (QGP) is also reviewed.


2007 ◽  
Vol 16 (10) ◽  
pp. 3379-3385 ◽  
Author(s):  
MEIJUAN WANG ◽  
YUANFANG WU

Rapidity and azimuthal correlation patterns for nucleon and relativistic heavy ion collisions are systematically studied by using PYTHIA for pp collisions, RQMD and AMPT for Au − Au collisions at [Formula: see text], respectively. The results show that the measures are sensitive to the collision particles, system size and production mechanism of the system.


2007 ◽  
Vol 16 (07n08) ◽  
pp. 1930-1936 ◽  
Author(s):  
WEI LIU ◽  
CHE MING KO ◽  
BEN-WEI ZHANG

A gluon or quark jet traversing through a quark-gluon plasma can be converted into a quark or gluon jet through scatterings with thermal partons. Their conversion rates due to two-body elastic and inelastic scattering as well as scatterings involving gluon radiation are evaluated in the lowest order in Quantum Chromodynamics (QCD). Including both energy loss and conversions of quark and gluon jets in the expanding quark-gluon plasma produced in relativistic heavy ion collisions, we find a net conversion of quark jets to gluon jets. This reduces the difference between the nuclear modification factors for quark and gluon jets in central heavy ion collisions and thus enhances the p/π+ and [Formula: see text] ratios at high transverse momentum. Using the larger QCD coupling constant from lattice QCD calculations than that given by the perturbative QCD further enhances the net quark to gluon jet conversion rate, leading to a closer similarity between these ratios at high transverse momentum in central Au + Au collisions at [Formula: see text] and in p + p collisions at same energy as observed in experiments.


Sign in / Sign up

Export Citation Format

Share Document