scholarly journals Review of Charmonium and Bottomonium Quark State Production via Relativistic Heavy Ion Collisions

Universe ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 13
Author(s):  
Leonard S. Kisslinger

This is a review of the production of heavy quark states via relativistic heavy ion collisions in RHIC. The heavy quarks here are c, charm quark, and b, bottom quark. The states are charmonium meson states Ψ ( n S ) , with n = 1,2 and upsilon meson states Υ ( m S ) , with m = 1,2,3. Quantum Chromodynamics (QCD) sum rules were used to derive the result that the Ψ ( 2 S ) and Υ ( 3 S ) are mixed hybrid states, which increase their production cross sections. We also review the Ψ ( n S ) and Υ ( m S ) production cross sections via Cu-Cu and Au-Au collisions, which are very important for this review of the production of heavy quark states in RHIC. The possible detection of the Quark Gluon Plasma (QGP) is also reviewed.

Proceedings ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 35
Author(s):  
Shyam Kumar for the ALICE Collaboration

Charm quarks are produced via hard parton scattering in ultra-relativistic heavy-ion collisions, hence are ideal probes to study a possible de-confined state of matter, known as Quark Gluon Plasma (QGP). The angular correlation of a meson containing a charm quark with other charged particles in heavy-ion collisions can help in studying the properties of QGP. Similar studies in pp collisions can give insight about the charm production mechanism while in p-Pb collisions could provide essential information to disentangle final-state QGP-induced modifications from effects caused by cold nuclear matter. In this proceedings, the results are presented for p-Pb collisions at s NN = 5.02 TeV and pp collisions at s = 13 TeV, so far the highest available energy at the LHC. The results are compared with Monte Carlo (MC) simulations using PYTHIA and POWHEG event generators and with pp collision results at s = 7 TeV.


1983 ◽  
Vol 28 (4) ◽  
pp. 1602-1613 ◽  
Author(s):  
D. L. Olson ◽  
B. L. Berman ◽  
D. E. Greiner ◽  
H. H. Heckman ◽  
P. J. Lindstrom ◽  
...  

2007 ◽  
Vol 16 (07n08) ◽  
pp. 2061-2065
Author(s):  
BIN ZHANG

J/ψ production is closely related to the production of the strongly interacting Quark-Gluon Plasma (sQGP) in relativistic heavy ion collisions. To study the effects of charm quark dynamics on J/ψ production, the phase space distributions of charm and anti-charm quarks are generated using A Multi-Phase Transport (AMPT) model. These charm quarks then coalesce into J/ψ particles. The production and flow of J/ψ show strong sensitivity to final state charm interactions. The results are compared to charm quark and D meson results from the AMPT model and recent predictions from other models.


2018 ◽  
Vol 171 ◽  
pp. 01003
Author(s):  
Rachid Nouicer

Hadrons conveying strange quarks or heavy quarks are essential probes of the hot and dense medium created in relativistic heavy-ion collisions. With hidden strangeness, ϕ meson production and its transport in the nuclear medium have attracted high interest since its discovery. Heavy quark-antiquark pairs, like charmonium and bottomonium mesons, are mainly produced in initial hard scattering processes of partons. While some of the produced pairs form bound quarkonia, the vast majority hadronize into particles carrying open heavy flavor. In this context, the PHENIX collaboration carries out a comprehensive physics program which studies the ϕ meson production, and heavy flavor production in relativistic heavy-ion collisions at RHIC. In recent years, the PHENIX experiment upgraded the detector in installing silicon vertex tracker (VTX) at mid-rapidity region and forward silicon vertex tracker (FVTX) at the forward rapidity region. With these new upgrades, the experiment has collected large data samples, and enhanced the capability of heavy flavor measurements via precision tracking. This paper summarizes the latest PHENIX results concerning ϕ meson, open and closed charm and beauty heavy quark production in relativistic heavy-ion collisions. These results are presented as a function of rapidity, energy and system size, and their interpretation with respect to the current theoretical understanding.


1989 ◽  
Vol 504 (4) ◽  
pp. 864-874 ◽  
Author(s):  
Joachim Thiel ◽  
Thomas Lippert ◽  
Norbert Grün ◽  
Werner Scheid

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Shusu Shi

Strange hadrons, especially multistrange hadrons, are good probes for the early partonic stage of heavy ion collisions due to their small hadronic cross sections. In this paper, I give a brief review on the elliptic flow measurements of strange and multistrange hadrons in relativistic heavy ion collisions at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC).


Sign in / Sign up

Export Citation Format

Share Document