scholarly journals Comparison of Different Rainfall Erosion Estimation Methods for the Island of Crete

Proceedings ◽  
2020 ◽  
Vol 30 (1) ◽  
pp. 67 ◽  
Author(s):  
Dimitrios D. Alexakis ◽  
Manolis Grillakis

Interactions between soil and rainfall plays a vital role in ecological, hydrological and biogeochemical cycles of land. Among those interactions, the phenomenon of rainfall induced soil erosion is crucial to the soil functions, as it affects the soil structure and organic matter content that subsequently affects soil ability to hold moisture and nutrients. The erosive power of a specific rainfall event is regulated by its intensity and total duration. Various methodologies have been developed and tested to estimate the rainfall erosivity in different hydroclimatic regions and using different rainfall measuring timescales. Studies have shown that high temporal resolution measurements provide a more robust erosivity estimation. Nonetheless the sparsity and scarcity of such high temporal resolution data make the accurate estimation of rainfall erosivity difficult. Here, we compare different erosion power estimation methods based on different rainfall timescales for the island of Crete. Sub-daily (30-min) rainfall data based estimation is used as the basis for the assessment of a daily data based estimation methodology and two different methods that use monthly rainfall data. Modified Fournier Index (MFI) is incorporated in the study through different literature approaches and a regression equation is developed between rainfall erosivity power and MFI index for Crete. Results indicate that the use of daily data in the rainfall erosive power estimation is a good approximation of the sub-daily estimation, while formulas based on monthly rainfall data tend to exhibit larger deviations.

2021 ◽  
Author(s):  
Nejc Bezak ◽  
Pasquale Borrelli ◽  
Panos Panagos

Abstract. Despite recent developments in modelling global soil erosion by water, to date no substantial progress has been made towards more dynamic inter- and intra-annual assessments. In this regard, the main challenge is still represented by the limited availability of high temporal resolution rainfall data needed to estimate rainstorms rainfall erosivity. As this data scarcity is likely to characterize the upcoming years, the suitability of alternative approaches to estimate global rainfall erosivity using satellite-based rainfall data was explored. For this purpose, the high spatial and temporal resolution global precipitation estimates obtained with the NOAA CDR Climate Prediction Center MORPHing technique (CMORPH) were used. Alternatively, the erosivity density (ED) concept was used to estimate global rainfall erosivity as well. The obtained global estimates of rainfall erosivity were validated against the pluviograph data included in the Global Rainfall Erosivity Database (GloREDa). Overall, results indicated that the CMORPH estimates have a marked tendency to underestimate rainfall erosivity when compared to the GloREDa estimates. The most substantial underestimations were observed in areas with the highest rainfall erosivity values. At continental level, the best agreement between annual CMORPH and interpolated GloREDa rainfall erosivity map was observed in Europe. Worse agreement was detected for Africa and South America. Further analyses conducted at monthly scale for Europe revealed seasonal misalignments, with the occurrence of underestimation of the CMORPH estimates in the summer period and overestimation in the winter period compared to GloREDa. The best agreement between the two approaches to estimate rainfall erosivity was found for autumn, especially in Central and Eastern Europe. Conducted analysis suggested that satellite-based approaches for estimation of rainfall erosivity appear to be more suitable for low-erosivity regions, while in high erosivity regions and seasons (> 1,000–2,000 MJ mm ha−1 h−1 yr−1), the agreement with estimates obtained from pluviograph data such as GloREDa is lower. Concerning the ED estimates, this second approach to estimate rainfall erosivity yielded better agreement with GloREDa estimates compared to CMORPH. The application of a simple-linear function correction of the CMORPH data was applied to provide better fit to the GloREDa and correct systematic underestimation. This correction improved the performance of the CMORPH but in areas with the highest rainfall erosivity rates the underestimation was still observed. A preliminary trend analysis of the CMORPH rainfall erosivity estimates was also performed for the 1998–2019 period. According to this trend analysis, increasing and statistically significant trend was more frequently observed than decreasing trend.


Author(s):  
R.M. Bagalwa ◽  
C. Chartin ◽  
S. Baumgartner ◽  
S. Mercier ◽  
M. Syauswa ◽  
...  

In the Lake Kivu region, water erosion is the main driver for soil degradation, but observational data to quantify the extent and to assess the spatial-temporal dynamics of the controlling factors are hardly available. In particular, high spatial and temporal resolution rainfall data are essential as precipitation is the driving force of soil erosion. In this study, we evaluated to what extent high temporal resolution data from the TAHMO network (with poor spatial and long-term coverage) can be combined with low temporal resolution data (with a high spatial density covering long periods of time) to improve rainfall erosivity assessments. To this end, 5 minute rainfall data from TAHMO stations in the Lake Kivu region, representing ca. 37 observation-years, were analyzed. The analysis of the TAHMO data showed that rainfall erosivity was mainly controlled by rainfall amount and elevation and that this relation was different for the dry and wet season. By combining high and low temporal resolution databases and a set of spatial covariates, an environmental regression approach (GAM) was used to assess the spatiotemporal patterns of rainfall erosivity for the whole region. A validation procedure showed relatively good predictions for most months (R2 between 0.50 and 0.80), while the model was less performant for the wettest (April) and two driest months (July and August) (R2 between 0.24 and 0.38). The predicted annual erosivity was highly variable with a range between 2000 and 9000 MJ mm ha−1 h−1 yr−1 and showed a pronounced east–west gradient which is strongly influenced by local topography. This study showed that the combination of high and low temporal resolution rainfall data and spatial prediction models can be used to improve the assessments of monthly and annual rainfall erosivity patterns that are grounded in locally calibrated and validated data.


2017 ◽  
Vol 12 (No. 2) ◽  
pp. 117-127 ◽  
Author(s):  
J. Brychta ◽  
M. Janeček

The study presents all approaches of rainfall erosivity factor (R) computation and estimation used in the Czech Republic (CR). A lot of distortions stem from the difference in erosive rainfall criteria, time period, tipping rain gauges errors, low temporal resolution of rainfall data, the type of interpolation method, and inappropriate covariates. Differences in resulting R values and their spatial distribution caused by the described approaches were analyzed using the geostatistical method of Empirical Bayesian Kriging and the tools of the geographic information system (GIS). Similarity with the highest temporal resolution approach using 1-min rainfall data was analyzed. Different types of covariates were tested for incorporation to the cokriging method. Only longitude exhibits high correlation with R and can be recommended for the CR conditions. By incorporating covariates such as elevation, with no or weak correlation with R, the results can be distorted even by 81%. Because of significant yearly variation of R factor values and not clearly confirmed methodology of R values calculation and their estimation at unmeasured places we recommend the R factor for agricultural land in the Czech Republic R = 40 MJ/ha·cm/h +/– 10% depends on geographic location.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Panos Panagos ◽  
Pasquale Borrelli ◽  
Katrin Meusburger ◽  
Bofu Yu ◽  
Andreas Klik ◽  
...  

2020 ◽  
Vol 12 (15) ◽  
pp. 2439 ◽  
Author(s):  
Christos Polykretis ◽  
Dimitrios D. Alexakis ◽  
Manolis G. Grillakis ◽  
Stelios Manoudakis

Under the continuously changing conditions of the environment, the exploration of spatial variability of soil erosion at a sub-annual temporal resolution, as well as the identification of high-soil loss time periods and areas, are crucial for implementing mitigation and land management interventions. The main objective of this study was to estimate the monthly and seasonal soil loss rates by water-induced soil erosion in Greek island of Crete for two recent hydrologically contrasting years, 2016 (dry) and 2019 (wet), as a result of Revised Universal Soil Loss Equation (RUSLE) modeling. The impact of temporal variability of the two dynamic RUSLE factors, namely rainfall erosivity (R) and cover management (C), was explored by using rainfall and remotely sensed vegetation data time-series of high temporal resolution. Soil, topographical, and land use/cover data were exploited to represent the other three static RUSLE factors, namely soil erodibility (K), slope length and steepness (LS) and support practice (P). The estimated rates were mapped presenting the spatio-temporal distribution of soil loss for the study area on a both intra-annual and inter-annual basis. The identification of high-loss months/seasons and areas in the island was achieved by these maps. Autumn (about 35 t ha−1) with October (about 61 t ha−1) in 2016, and winter (about 96 t ha−1) with February (146 t ha−1) in 2019 presented the highest mean soil loss rates on a seasonal and monthly, respectively, basis. Summer (0.22–0.25 t ha−1), with its including months, showed the lowest rates in both examined years. The intense monthly fluctuations of R-factor were found to be more influential on water-induced soil erosion than the more stabilized tendency of C-factor. In both years, olive groves in terms of agricultural land use and Chania prefecture in terms of administrative division, were detected as the most prone spatial units to erosion.


2019 ◽  
Author(s):  
David L. Dunkerley

Abstract. Many landsurface processes, including splash dislodgment and downslope transport of soil materials, are influenced strongly by short-lived peaks in rainfall intensity but are less well accounted for by longer-term average rates. Specifically, rainfall intensities reached over periods of 10–30 minutes appear to have more explanatory power than hourly or longer-period data. However, most analyses of rainfall, and particularly scenarios of possible future rainfall extremes under climate change, rely on hourly data. Using two Australian pluviograph records with 1 second resolution, one from an arid and one from a wet tropical climate, the nature of short-lived intensity bursts is analysed from the raw inter-tip times of the tipping bucket gauges. Hourly apparent rainfall intensities average just 1.43 mm h−1 at the wet tropical site, and 2.12 mm h−1 at the arid site. At the wet tropical site, intensity bursts of extreme intensity occur frequently, those exceeding 30 mm h−1 occurring on average at intervals of  60 mm h−1 occurring on average at intervals of


2021 ◽  
Author(s):  
Ingrid Petry ◽  
Fernando Mainardi Fan

<p>In erosion studies the behavior of rainfall is primordial, since rain is responsible for the first stage of the erosion process: the detachment of soil particles. The erosive potential of rainfall, erosivity, is considered in the universal soil loss equations (R)USLE family through the parameter R, or R factor. This factor is calculated from the rainfall erosivity index, which is the product of kinetic energy of the rain by the maximum intensity of the rain of 30 minutes of duration. As sub-hour rainfall data is not always available, there are in the literature a series of equations obtained from regression, which use monthly and annual rainfall and present a good estimate of erosivity for your study site. In Brazil, in addition to limitations regarding the temporal resolution of rainfall data, there are also spatial limitations. Monitoring stations are concentrated mostly in urbanized areas, usually near the coast. The other regions, such as agricultural and forest areas, are poorly monitored, and these areas are of great interest for monitoring erosion, not only because they are periodically exposed soil areas, but also because of the high rainfall rates that humid forests like Amazon have. MSWEP is a rainfall database that combines observed, satellite and reanalysis data. It has global coverage, temporal resolution of 3 hours, spatial 0.1º and data from 1979 to 2016. Databases like this have great potential to be used in areas such as Brazil, due to its spatial and temporal resolution. In this context, considering the relevance that the soil loss equations still present today, this work developed a rainfall erosivity database entitled REDB-BR (Rainfall Erosivity Database for Brazil). It provides the R factor in a 0.1º resolution grid, developed with 37 years of rainfall data from the MSWEP dataset. The R factor was calculated trough 73 erosivity index regression equations, which mostly uses the Modified Fournier Index (MFI), a relation between monthly precipitation and annual precipitation. Thiessen polygons were used in order to spatialize and define the areas of each equation. Over the Brazilian territory, the R factor ranges from 1.200 to 20.000 MJ mm ha-1 h-1 year-1, with the higher values in the North region, and the lowest values in the Northeast. The spatial patterns of erosivity are very similar to the climatic zones of Brazil. The R factor map takes advantage of MSWEP dataset and presents a spatial resolution very detailed to a country with continental scale such as Brazil. The database includes the equations shapefile and table, Thiessen Polygons shapefile and the R factor map in raster format, which allows more possibilities of application. The database can be accessed at <https://zenodo.org/record/4428308#.X_hxsOhKiUk>. We identified sudden changes in behavior between the delimited areas, which suggests a need for more regression equations in order to better represent the behavior of the erosivity in the Brazilian territory.</p>


Sign in / Sign up

Export Citation Format

Share Document