scholarly journals Drivers of Phosphorus Efficiency in Tropical and Subtropical Cropping Systems

Proceedings ◽  
2019 ◽  
Vol 36 (1) ◽  
pp. 13
Author(s):  
Das ◽  
Huth ◽  
Probert ◽  
Paul ◽  
Kihara ◽  
...  

Phosphorus (P) is an essential nutrient but is commonly limiting for food production in tropicaland subtropical maize cropping [...]

2008 ◽  
Vol 108 (3) ◽  
pp. 231-237 ◽  
Author(s):  
Xu Tang ◽  
Jumei Li ◽  
Yibing Ma ◽  
Xiying Hao ◽  
Xiuying Li

2015 ◽  
Vol 67 (5) ◽  
pp. 1221-1229 ◽  
Author(s):  
Fanmiao Wang ◽  
Terry Rose ◽  
Kwanho Jeong ◽  
Tobias Kretzschmar ◽  
Matthias Wissuwa

2020 ◽  
Author(s):  
Xiaolin Yang ◽  
Tammo Steenhuis ◽  
Kyle Davis ◽  
Wopke van der Werf ◽  
Coen Ritsema ◽  
...  

Abstract Earth’s water resources are critical for supporting livelihoods and food security but are being increasingly overexploited to support global agriculture. Diversifying cropping systems could potentially resolve unsustainable water use but trade-offs with other aspects of sustainability and food security have not yet been assessed. We perform a detailed meta-analysis to systematically compare 31 different crop rotations in China– in terms of actual evapotranspiration (ETa), effect on groundwater depth, grain yield, economic output, and water use efficiency (WUE) – and identify configurations that can achieve co-benefits across multiple dimensions. We find that a combination of lowering the cropping index (i.e., harvest frequency), incorporating fallow periods, and introducing higher value crops into the currently dominant winter wheat-summer maize double cropping system can reduce growing season ETa by as much as 31%, mitigate groundwater decline by 19% or more, and increased economic output and economic WUE by more than 11% and 3%, respectively. We also find that multiple diversified wheat-maize–based rotations– all with rotation lengths greater than two years– achieve co-benefits across all evaluated dimensions. This study provides new empirical evidence of the opportunities for diversified crop rotations to balance the multiple objectives of food production, sustainable groundwater use and farmer profitability. Extending this solution to other water-stressed agricultural regions could be an effective strategy in achieving more sustainable food production globally.


2015 ◽  
Vol 48 (4) ◽  
pp. 13-20
Author(s):  
A. Ahmad ◽  
Z.I. Ahmed ◽  
M. Shehzad ◽  
I. Aziz ◽  
K.S. Khan ◽  
...  

Abstract Water scarcity and land degradation are emerging threats to global food production. The dry land regions of world are affected by climate change to a greater extent and facing food insecurity. The current pattern of food production has been estimated to be inadequate to meet demands of growing population and required around 38% increase to meet world`s food demands by 2025. Food insecurity in erosion hit dry land regions of Pakistan also demands development of resource-efficient cropping systems to meet the food needs of population growing. The research studies involved different cropping patterns such as fallow-wheat, mungbean-wheat, sorghum-wheat, fallow-lentil, mungbean-lentil, sorghum-lentil, fallow-barley, mungbean-barley and sorghum-barley. The organic amendments involved farmyard manure, NPK, poultry manure, compost and inoculation by phosphorus solubilizing microbes. The effect of cropping systems and soil amendments were evaluated at field scale in terms of water use efficiency measured in terms of economic terms. The results of the studies revealed that double cropping (mungbean-lentil and mungbean-barley) was feasible option in the dryland regions of Pakistan if integrated with the use of poultry manure as alternate environmental-friendly strategy to cut down the use of mineral fertilizers and eliminate summer fallowing.


2021 ◽  
Vol 5 ◽  
Author(s):  
Paulo César de Faccio Carvalho ◽  
Pedro Arthur de Albuquerque Nunes ◽  
Arthur Pontes-Prates ◽  
Leonardo Silvestri Szymczak ◽  
William de Souza Filho ◽  
...  

Closely integrated crop and livestock production systems used to be the rule in agriculture before the industrial revolution. However, agricultural landscapes have undergone a massive intensification process in recent decades. This trajectory has led to uniform landscapes of specialized cropping systems or consolidated zones of intensive livestock production. Loss of diversity is at the core of increasing side effects on the environment from agriculture. The unintended consequences of specialization demand the reconciliation of food production with environmental quality. We argue that the reconnection of grazing livestock to specialized crop landscapes can restore decoupled biogeochemical cycles and reintroduce the necessary complexity to restore ecosystem functioning. Besides, the reconnection of crops and livestock promotes several ecosystem services underlying multifunctionality. We focus on the capacity of integrated crop-livestock systems to create biophysical and socioeconomic resilience that cope with weather and market oscillations. We present examples of redesigned landscapes that leverage grazing animals to optimize food production per unit of land while mitigating the externalities of specialized agriculture. We also debate mindset barriers to the shift of current specialization trends toward the design of multifunctional landscapes.


Author(s):  
Charles A. Francis

Adaptation of cropping systems to weather uncertainty and climate change is essential for resilient food production and long-term food security. Changes in climate result in substantial temporal modifications of cropping conditions, and rainfall and temperature patterns vary greatly with location. These challenges come at a time when global human population and demand for food are both increasing, and it appears to be difficult to find ways to satisfy growing needs with conventional systems of production. Agriculture in the future will need to feature greater biodiversity of crop species and appropriate design and management of cropping and integrated crop/animal systems. More diverse and longer-cycle crop rotations will need to combine sequences of annual row crops such as maize and soybean with close-drilled cereals, shallow-rooted with deep-rooted crops, summer crops with winter crops, and annuals with perennials in the same fields. Resilience to unpredictable weather will also depend on intercropping, with the creative arrangement of multiple interacting crop species to diversify the field and the landscape. Other multiple-cropping systems and strategies to integrate animals and crops will make more efficient use of natural resources and applied inputs; these include systems such as permaculture, agroforestry, and alley cropping. Future systems will be spatially diverse and adapted to specific fields, soil conditions, and unique agroecozones. Production resilience will be achieved by planting diverse combinations of species together in the same field, and economic resilience through producing a range of products that can be marketed through different channels. The creation of local food webs will be more appropriate in the future, as contrasted with the dominance of global food chains today. Materials considered “waste” from the food system, including human urine and feces, will become valuable resources to be cycled back into the natural environment and into food production. Due to the increasing scarcity of fertile land, the negative contributions of chemicals to environmental pollution, the costs of fossil fuels, and the potential for the economic and political disruption of supply chains, future systems will increasingly need to be local in character while still achieving adaptation to the most favorable conditions for each system and location. It is essential that biologically and economically resilient systems become productive and profitable, as well as environmentally sound and socially equitable, in order to contribute to stability of food production, security of the food supply, and food sovereignty, to the extent that this is possible. The food system cannot continue along the lines of “business as usual,” and its path will need to radically diverge from the recognized trends toward specialization and globalization of the early 21st century. The goal needs to shift from exploitation and short-term profits to conservation of resources, greater equity in distribution of benefits, and resilience in food supply, even with global climate change.


MAUSAM ◽  
2021 ◽  
Vol 67 (1) ◽  
pp. 169-182
Author(s):  
CH. SRINIVASA RAO ◽  
K. A. GOPINATH

Even though drought is one of the most common features affecting rainfed agriculture, it is necessary to consider it as an extreme climatological event that requires different types of alleviating strategies for overcoming it. The risk involved in successful cultivation of crops depends on the nature of drought (chronic and contingent), its probable duration, and frequency of occurrence within the season. These aberrations are expected to further increase in future. A significant fall in food production is often noticed with increase in intensity or extension in duration of drought prevalence. Drought affects not only the food production at farm level but also the national economy and overall food security. Location-specific rainfed technologies are available to cope with different drought situations. Much of the research done in rainfed agriculture in India relates to conservation of soil & rainwater and to drought proofing. The key technologies for drought mitigation are in situ moisture conservation, rainwater harvesting and recycling, resilient crops and cropping systems including contingency crop plans, foliar sprays, and integrated farming systems. However, drought preparedness and real time implementation of contingency measures at field level needs well structured institutional support for farmers with strong government policy and convergence among various institutions. Ministry of Agriculture, Government of India, needs to facilitate the convergence process of various government schemes such as MGNREGA, RKVY, Mega Seed Project, NFSM, NHM, IWMP, Soil health schemes etc. for drought preparedness. National Mission for Sustainable Agriculture (NMSA), one among the missions under the Prime Minister National Action Plan for Climate Change (NAPCC) may take a lead role in implementation of contingency, by inclusion of this activity in State Action Plans (SAP) with a dedicated Nodal Institution /officers and budget provision.


2021 ◽  
Vol 5 ◽  
Author(s):  
Erana Kebede

Legumes improve soil fertility through the symbiotic association with microorganisms, such as rhizobia, which fix the atmospheric nitrogen and make nitrogen available to the host and other crops by a process known as biological nitrogen fixation (BNF). Legumes included in the cropping system improve the fertility of the soil and the yield of crops. The advantages of legumes in the cropping system are explained in terms of direct nitrogen transfer, residual fixed nitrogen, nutrient availability and uptake, effect on soil properties, breaking of pests' cycles, and enhancement of other soil microbial activity. The best benefits from the legumes and BNF system can be utilized by integrating them into cropping systems. The most common practices to integrate legumes and their associated BNF into agricultural systems are crop rotation, simultaneous intercropping, improved fallows, green manuring, and alley cropping. However, the level of utilizing nitrogen fixation requires improvement of the systems, such as selecting appropriate legume genotypes, inoculation with effective rhizobia, and the use of appropriate agronomic practices and cropping systems. Therefore, using legumes at their maximum genetic potential, inoculation of legumes with compatible rhizobia, and using appropriate agronomic practices and cropping systems are very important for increasing food production. Importantly, the utilization of legumes as an integral component of agricultural practice in promoting agricultural productivity has gained more traction in meeting the demand of food production of the world populace. Priority should, thus, be given to value the process of BNF through more sustainable technologies and expansion of knowledge to the system.


Sign in / Sign up

Export Citation Format

Share Document