scholarly journals Evaluation of the Influence of the Primary Energy Factor of Hydropower Plants in the Methodology for Assessing the Energy Performance of Buildings

Proceedings ◽  
2020 ◽  
Vol 51 (1) ◽  
pp. 4
Author(s):  
Rokas Tamašauskas ◽  
Jolanta Šadauskienė ◽  
Monika Šadauskaitė

There is currently no common or standardized procedure for certification of the energy performance of buildings, as each EU Member State takes into account the specificities of its own construction sector when implementing the provisions of Directive 2010/31/EU. This usually depends on two features: the purpose of the building and the climate. Therefore, the purpose of this paper is to evaluate the influence of the hydropower primary energy factor on assessing the energy performance of buildings. For this purpose, non-renewable primary energy factor values were analyzed regarding actual energy production and consumption data from 19 Lithuanian hydroelectric plants. The results of the studies show that the average value of the non-renewable primary energy factor of hydropower plants is 0.059.

Proceedings ◽  
2020 ◽  
Vol 51 (1) ◽  
pp. 5
Author(s):  
Rokas Tamašauskas ◽  
Jolanta Šadauskienė ◽  
Dorota Anna Krawczyk ◽  
Violeta Medelienė

The European Commission has set the target in the Energy Efficiency Directive (EED) to reduce EU primary energy consumption in 2020 by 20%. A crucial aspect of the overall assessment of energy saving measures that affect electricity demand is the primary energy factor that is used for evaluation of primary energy consumption from renewable energy resources in a Nearly Zero Energy Building (nZEB). The analysis of the resources has revealed that energy from photovoltaics is evaluated using different methods. Therefore, this article’s aim is to investigate and evaluate the primary energy factor of energy from photovoltaics using the data of produced and consumed energy of 30 photovoltaic (PV) systems operating in Lithuania. Investigation results show that the difference of non-renewable primary energy factor between the PV systems due to capacities is 35%. In addition, the results of the studies show that the average value of the primary energy factor of PV systems in Lithuania is 1.038.


Proceedings ◽  
2019 ◽  
Vol 16 (1) ◽  
pp. 9 ◽  
Author(s):  
Rokas Tamašauskas ◽  
Jolanta Šadauskienė ◽  
Patrikas Bruzgevičius ◽  
Dorota Anna Krawczyk

In order to fulfil the European Energy Performance of Buildings Directive (EPBD) requirements regarding the reduction of energy consumption in buildings, much attention has been paid to primary energy consumption. Wind energy is one type of primary energy. The analysis of the literature has revealed that wind energy is evaluated by different methods. Therefore, the aim of this article was to calculate the effect of the parameters of wind sources on the primary energy factor of wind turbines. In order to achieve this aim, the primary energy factor of 100 investigated wind turbines and 11 wind farms operating in Lithuania was calculated. Investigation results showed that the difference of the non-renewable primary energy factor between wind turbines due to capacity is 35%. This paper provides a recommendation with regard to EU energy efficiency and renewable energy directives and regulations: All EU member states should use the same or very similar methodology for the calculation of the primary energy factor of renewable and non-renewable energy sources.


2015 ◽  
Vol 789-790 ◽  
pp. 1181-1184
Author(s):  
Michal Kraus ◽  
Kateřina Kubeková ◽  
Darja Kubečková

The main objective of the paper is to confirm or exclude a statistically significant impact of airtightness on the energy performance of buildings. Energy performance of buildings is characterized by a specific energy demand for heating and specific total primary energy. Airtightness is one of the key factors of energy efficient buildings. The quality of airtight building envelope except for low energy consumption also minimizes the risk of damage to the structure associated with the spread of the heat and water vapor in the structure.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4099 ◽  
Author(s):  
Rokas Tamašauskas ◽  
Jolanta Šadauskienė ◽  
Dorota Anna Krawczyk ◽  
Violeta Medelienė

Following a new climate and energy plan, the European Union (EU) gives big attention to energy savings. The overall assessment of energy saving measures is very important. Thus, it is crucial to estimate in a proper way the primary energy factor, which is used in calculations of primary energy consumption from renewable energy (RE) sources in a Nearly Zero Energy Building (NZEB). The conduced studies of the literature and national regulations showed that different methods to determine energy from photovoltaic (PV) systems are used. The aim of this paper is to evaluate the primary energy factors of energy from photovoltaics and determine the average value. To achieve this aim, the data of 30 photovoltaic systems from Lithuania were analyzed. The results show a 35% diversification in the values of non-renewable primary energy factor, depending on the PV systems’ capacities, with the average on a level of 1.038.


2021 ◽  
Vol 11 (1) ◽  
pp. 8
Author(s):  
Lihnida Stojanovska-Georgievska ◽  
Ivana Sandeva ◽  
Aleksandar Krleski ◽  
Hristina Spasevska ◽  
Margarita Ginovska ◽  
...  

Although the building sector builds and renovates objects, the construction industry is currently due for a digital renovation. In this paper, we provide insight into the status of BIM adoption in North Macedonia as a step towards the digital transformation of the construction industry. The presented review on the current stage of development, benefits, and barriers is followed with showcasing the possibilities for using BIM for the assessment of the energy performance of buildings through case studies. Furthermore, the results of the conducted survey on BIM awareness and the proposed national roadmap for BIM adoption are elaborated on.


2014 ◽  
Vol 6 (4) ◽  
pp. 414-420 ◽  
Author(s):  
Giedrė Streckienė ◽  
Elena Polonis

To meet the goals established by Directive 2010/31/EU of the European Parliament and of the Council on the energy performance of buildings, the topics of energy efficiency in new and old buildings must be solved. Research and development of new energy solutions and technology are necessary for increasing energy performance of buildings. Three low-energy multi-dwelling buildings have been modelled and analyzed in the presented study. All multi-dwelling houses are made of similar single-family house cells. However, multi-dwelling buildings are of different geometry, flat number and height. DesignBuilder software was used for simulating and determining heating, cooling and electricity demand for buildings. Three different materials (silicate, ceramic and clay concrete blocks) as bearing constructions of external walls have been analyzed. To decrease cooling demand for buildings, the possibility of mounting internal or external louvers has been considered. Primary energy savings for multi-dwelling buildings using passive solar measures have been determined. Norint pasiekti Europos Sąjungos direktyvos 2010/31/EB tikslus dėl pastatų energinio naudingumo, reikia spręsti energijos efektyvumo klausimus naujų ir esamų pastatų srityje. Naujų energinių sprendinių ir technologijų tyrimai bei plėtra būtini norint padidinti pastatų energinį naudingumą. Šiame tyrime modeliuojami ir analizuojami trys mažaenergiai daugiabučiai pastatai. Visi jie sudaryti iš vienodo dydžio butų, tačiau pastatai tarpusavyje skiriasi geometrija, butų skaičiumi ir aukštingumu. Siekiant nustatyti ir išnagrinėti pastatų šilumos, vėsos ir elektros energijos poreikius, naudotasi DesignBuilder programa. Visų daugiabučių pastatų atvejais nagrinėjamos trys skirtingos išorės sienų laikančiųjų konstrukcijų medžiagos: silikatiniai, keraminiai ir keramzitbetonio blokeliai. Siekiant sumažinti vėsos poreikį pastatuose taip pat buvo analizuojama galimybė sumontuoti vidines arba išorines žaliuzes. Nustatyti sutaupytieji pirminės energijos kiekiai daugiabučių pastatų atvejams taikant pasyviąsias apsaugos nuo saulės priemones.


2018 ◽  
Vol 40 (2) ◽  
pp. 198-219 ◽  
Author(s):  
Roger Hitchin

The related concepts of Primary Energy and Primary Energy Factors (which describe how much Primary energy is contained in each unit of delivered energy) are used for international comparisons of national energy use and have become increasingly important regulatory and statistical metrics, especially in relation to the European Energy Performance of Buildings Directive. As concepts they contain a mixture of technical, political and economic dimensions, so it is perhaps unsurprising that reported values from different organisations and countries do not seem to be calculated in the same way. This review aims to clarify the origins of such differences by identifying, summarising and commenting on alternative conventions that are or can be applied. In particular, it aims to provide a starting point for the development of a transparent means of reporting the procedures and conventions that are employed. Such a framework would provide a basis for understanding the reasons for differences. The review does not recommend specific conventions or procedures – preferences will vary, depending on a number of factors. Practical application: Primary Energy Factors are central to international comparisons of national energy consumption and to several aspects of European energy policy. In the context of buildings, they are especially important to the newly revised Energy Performance of Buildings Directive which requires primary energy to be the primary metric, rather than, for example, carbon emissions. It is known that different countries use different methodologies and that this can have substantial repercussions. The methodologies used are rarely reported and range of possible options has not previously been set out. This paper sets out to do this in order so that choices can be made with greater transparency and clarity.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2145
Author(s):  
Rokas Tamašauskas ◽  
Jolanta Šadauskienė ◽  
Patrikas Bruzgevičius ◽  
Dorota Anna Krawczyk

In order to fulfill the European Energy Performance of Buildings Directive (EPBD) requirements regarding the reduction of energy consumption in buildings, great attention is paid to primary energy consumption. Wind energy is considered a type of primary energy. The analysis of the literature has revealed that wind energy is evaluated by different methods. Therefore, the aim of this article is to calculate the effect of the parameters of wind sources and wind speed on the primary energy factor of wind turbines. In order to achieve this aim, the primary energy factor of investigated 100 wind turbines and 11 wind farms operating in Lithuania was calculated. The results of the investigation show that the difference in the non-renewable primary energy factors between wind turbines with regard to their capacity is 35%. In addition, primary energy factor (PEF) values depend on geographic location and climate conditions. This paper provides a recommendation that the EU energy efficiency and renewable energy directives and regulations of all EU member states should use the same or, at least, a very similar methodology for the calculation of the primary energy factors of renewable and non-renewable energy sources.


Sign in / Sign up

Export Citation Format

Share Document