scholarly journals Innovative Approach on Aerobic Activated Sludge Process towards more Sustainable Wastewater Treatment

Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 645
Author(s):  
Georgios Samiotis ◽  
Dimitrios Tzelios ◽  
Eleni Trikoilidou ◽  
Alexandros Koutelias ◽  
Elisavet Amanatidou

This work presents an innovative approach on aerobic activated sludge (AS) wastewater treatment plants’ (WWTP) design and operation towards more efficient wastewater treatment, minimization of sludge accumulation and significant reduction of excess sludge, with relatively low specific energy consumption. This approach, which is called complete solids retention activated sludge (CRAS) process, was applied on a slaughterhouse’s WWTP and on a fruit processing industry’s WWTP, characterized by high organic and volumetric load respectively, as well as on a municipal WWTP located in Paralimni, Cyprus. The results showed without using sophisticated technologies and processes a more sustainable WWTP operation can be achieved.

2020 ◽  
Vol 74 (3) ◽  
pp. 156-160 ◽  
Author(s):  
Thomas Poiger ◽  
Martina Keller ◽  
Ignaz J. Buerge ◽  
Marianne E. Balmer

The herbicide glyphosate is frequently detected in surface waters and its occurrence is linked to agricultural as well as urban uses. Elevated concentrations downstream of wastewater treatment plants (WWTPs) suggest that municipal wastewater is an important source of glyphosate in surface waters. We therefore conducted a study at a typical municipal WWTP in Switzerland to characterize the seasonality of glyphosate occurrence, the removal efficiency, and the processes involved in glyphosate removal. Glyphosate was present in raw (mechanically treated) wastewater during the whole study period (April to November). A lab incubation experiment with activated sludge indicated negligible degradation of glyphosate. Lack of degradation combined with strong adsorption lead to substantial enrichment of the compound in the sludge. Due to this enrichment and the long residence time of activated sludge (several days, compared to hours for wastewater itself), concentrations in treated wastewater show comparatively little variation, whereas concentrations in raw wastewater may fluctuate considerably. Overall removal efficiencies were in the range of 71–96%. This behavior could be described qualitatively using a numerical model that included input of glyphosate via raw wastewater, adsorption to activated sludge, and export via treated wastewater and excess sludge, but excluded degradation processes.


2021 ◽  
Vol 899 (1) ◽  
pp. 012070
Author(s):  
Liana Kemmou ◽  
Georgios Samiotis ◽  
Elisavet Amanatidou

Abstract Sustainability of activated sludge (AS) wastewater treatment processes is inexplicably linked to minimization of secondary wastes, such as waste sludge, as well as energy requirements for achieving effluent quality standards. Oxygen requirements and waste sludge management accounts for most of energy consumption in aerobic AS wastewater treatment plants (WWTPs). In this study, a novel, highly aerobic AS process, entitled complete solids retention AS process (CRAS), is being evaluated in terms of waste sludge production and biomass oxygen utilization rate. Aim of this work is to study the effect of solids retention time (SRT) on observed sludge yields and on oxygen requirements for respiration in order to evaluate CRAS process as a sustainable alternative to typical activated sludge processes.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Young Kyung Kim ◽  
Keunje Yoo ◽  
Min Sung Kim ◽  
Il Han ◽  
Minjoo Lee ◽  
...  

Abstract Bacterial communities in wastewater treatment plants (WWTPs) affect plant functionality through their role in the removal of pollutants from wastewater. Bacterial communities vary extensively based on plant operating conditions and influent characteristics. The capacity of WWTPs can also affect the bacterial community via variations in the organic or nutrient composition of the influent. Despite the importance considering capacity, the characteristics that control bacterial community assembly are largely unknown. In this study, we discovered that bacterial communities in WWTPs in Korea and Vietnam, which differ remarkably in capacity, exhibit unique structures and interactions that are governed mainly by the capacity of WWTPs. Bacterial communities were analysed using 16S rRNA gene sequencing and exhibited clear differences between the two regions, with these differences being most pronounced in activated sludge. We found that capacity contributed the most to bacterial interactions and community structure, whereas other factors had less impact. Co-occurrence network analysis showed that microorganisms from high-capacity WWTPs are more interrelated than those from low-capacity WWTPs, which corresponds to the tighter clustering of bacterial communities in Korea. These results will contribute to the understanding of bacterial community assembly in activated sludge processing.


Author(s):  
Hisashi Satoh ◽  
Yukari Kashimoto ◽  
Naoki Takahashi ◽  
Takashi Tsujimura

A deep learning-based two-label classifier 1 recognized a 20% morphological change in the activated flocs. Classifier-2 quantitatively recognized an abundance of filamentous bacteria in activated flocs.


1999 ◽  
Vol 40 (11-12) ◽  
pp. 223-229 ◽  
Author(s):  
Frédéric Clauss ◽  
Christel Balavoine ◽  
Delphine Hélaine ◽  
Gaëtan Martin

Forest industry wastewaters are difficult to clean: hydraulic and organic load variations, filamentous bulking or pin-point flocs negatively impact depollution processes. The addition of a fine, mineral, talc-based powder, Aquatal, into the aeration tanks of wastewater treatment plants connected to pulp and paper factories has been successfully tested since end of '97. The first case-study presents full results obtained over a period of 18 months in a 20,000 p.e. plant connected to a paper factory. The mineral powder was regularly added to control sludge volume index, thereby ensuring low suspended solids concentration in the outfluent. Plant operators could easily adapt biomass concentration to match organic load variation, thereby maintaining pollution micro-organisms ratio constant. In a second case study, a trouble-shooting strategy was implemented to counteract filamentous bulking. A one-off, large dosage enabled the plant operator to deal effectively with poor settleability sludge and rapidly control sludge blanket expansion. In both cases, the main common characteristics observed were an increase in floc aggregation and the production of heavier and well-structured flocs. The sludge settling velocity increased and an efficient solid/liquid separation was obtained. After a few days, the mineral particles of Aquatal were progressively integrated into the sludge floc structure. When the mineral powder was added to the activated sludge in the aeration basin, chemical interactions frequently encountered with other wastewater treatment additives did not pose a problem. Moreover, with this mineral additive, the biological excess sludge displayed good thickening properties and dewatering was improved. Despite the addition of the insoluble mineral particles, the amount of wet sludge expelled did not increase. Aquatal offers a rapid solution to floc settleability problems which so frequently arise when physical or biological disorders appear in forest industry wastewater treatment plants.


1994 ◽  
Vol 30 (4) ◽  
pp. 211-214 ◽  
Author(s):  
E. Brands ◽  
M. Liebeskind ◽  
M. Dohmann

This study shows a comparison of important parameters for dynamic simulation concerning the highrate and low-rate activated sludge tanks of several municipal wastewater treatment plants. The parameters for the dynamic simulation of the single-stage process are quite well known, but parameters for the high-ratellow-rate activated sludge process are still missi ng, although a considerable number of wastewater treatment plants are designed and operated that way. At present any attempt to simulate their operation is restricted to the second stage due to missing data concerning growth rate, decay rate, yield coefficient and others.


Sign in / Sign up

Export Citation Format

Share Document