wwtp design
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 4)

H-INDEX

3
(FIVE YEARS 1)

2020 ◽  
Vol 12 (10) ◽  
pp. 4168 ◽  
Author(s):  
Philipp Kehrein ◽  
Mark van Loosdrecht ◽  
Patricia Osseweijer ◽  
John Posada ◽  
Jo Dewulf

This paper guides decision making in more sustainable urban water management practices that feed into a circular economy by presenting a novel framework for conceptually designing and strategically planning wastewater treatment processes from a resource recovery perspective. Municipal wastewater cannot any longer be perceived as waste stream because a great variety of technologies are available to recover water, energy, fertilizer, and other valuable products from it. Despite the vast technological recovery possibilities, only a few processes have yet been implemented that deserve the name water resource factory instead of wastewater treatment plant. This transition relies on process designs that are not only technically feasible but also overcome various non-technical bottlenecks. A multidimensional and multidisciplinary approach is needed to design water resource factories (WRFs) in the future that are technically feasible, cost effective, show low environmental impacts, and successfully market recovered resources. To achieve that, the wastewater treatment plant (WWTP) design space needs to be opened up for a variety of expertise that complements the traditional wastewater engineering domain. Implementable WRF processes can only be designed if the current design perspective, which is dominated by the fulfilment of legal effluent qualities and process costs, is extended to include resource recovery as an assessable design objective from an early stage on. Therefore, the framework combines insights and methodologies from different fields and disciplines beyond WWTP design like, e.g., circular economy, industrial process engineering, project management, value chain development, and environmental impact assessment. It supports the transfer of the end-of-waste concept into the wastewater sector as it structures possible resource recovery activities according to clear criteria. This makes recovered resources more likely to fulfil the conditions of the end-of-waste concept and allows the change in their definition from wastes to full-fledged products.


2019 ◽  
Vol 7 (1) ◽  
pp. 59
Author(s):  
Hayder M. Issa

Satisfactory effluent characteristics are indispensable to evaluate the performance of any wastewater treatment plant (WWTP) design. Dynamic simulation software has a great role in pursuing this objective, in which an efficient and cost-effective design is constantly performed. In this study, a dynamic simulator sewage treatment operation analysis over time (STOAT) has been used under certain influent conditions to optimize design possibilities for modifying an existing primary WWTP College of Engineering Wastewater Treatment Plant (COEWWTP) at Erbil, Kurdistan, Iraq. The optimization was established on the basis of total suspended solids (TSS) and biochemical oxygen demand (BOD) characteristics in the effluent. Two alternative design schemes were proposed; trickling biofilter and aeration basin. In the dynamic simulation for the investigated design schemes, the predicted effluent profile showed that each of the existing and trickling biofilter processes has failed to correspond to the valid effluent limitation, whereas predicted results of the aeration basin exhibited an effluent profile that meets TSS and BOD allowable limits. Different simulation models have been implemented by STOAT to simulate treatment processes in studied design approaches: ASAL 1 model; BOD model; BOD semi-dynamic model; and SSED 1 model. This study offers an additional understanding of WWTP design and facilitates the application of dynamic simulators as tools for wastewater treatment development in Kurdistan.


2019 ◽  
Vol 20 (1) ◽  
pp. 123
Author(s):  
Rustiana Yuliasni ◽  
Bekti Marlena ◽  
Syarifa Arum Kusumastuti ◽  
Cholid Syahroni

ABSTRACTUpflow Anaerobic Sludge Blanket (UASB)-Wetland Integrated Technology was applied to treating fish-processing wastewater, taking into account for its simplicity, rapid and economical as well as its capability for reducing pollutant, so the effluent can fulfill effluent standard regulation. The research was carried out by the following steps: identification of wastewater characteristics, WWTP design and construction, and WWTP operational trials. The trials showed that UASB could remove COD average 72.3% and could achieve the highest COD removal of 95.42%, with retention time 24 hours.  Wetland could remove COD 52.9% on average and the highest COD removal was 78.22%. Simultaneously UASB-Wetland hybrid Technology could remove 86.25% COD on average, and the highest COD removal was 98.58%. Effluent has compiled the stream standard regulation and can be reused for fish farming.Keywords: fish processing wastewater, high organic wastewater treatment, integrated UASB-Wetland,  Anaerobic-Aerobic WWTPABSTRAKTeknologi gabungan Upflow Anaerobic Sludge Blanket (UASB) - wetland diaplikasikan untuk mengolah air limbah industri pengolahan ikan dengan pertimbangan bahwa teknologi ini murah dan mudah pengoperasiannya serta dapat mereduksi polutan sehingga kualitas effluent memenuhi syarat baku mutu.  Instalasi pengolahan limbah terdiri dari unit ekualisasi, UASB dan wetland. Hasil uji coba pengolahan dengan UASB menujukkan bahwa penurunan COD rata-rata 72,3% dengan persen penurunan tertinggi mencapai 95,42% dan penurunan COD dengan proses wetland rata-rata 52,9% dengan penurunan tertinggi mencapai 78,22%. Secara keseluruhan proses IPAL hibrid UASB-Wetland mampu menurunkan nilai COD rata-rata sebesar 86,25% dengan penurunan tertinggi mencapai 98,58%. Limbah terolah (effluent) sudah memenuhi baku mutu yang disyaratkan serta dapat dimanfaatkan kembali (reuse) sebagai sumber air untuk budidaya perikanan darat.Kata kunci: air limbah pengolahan ikan, pengolahan limbah organik tinggi, gabungan UASB-wetland, IPAL anaerobik-aerobik


Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 645
Author(s):  
Georgios Samiotis ◽  
Dimitrios Tzelios ◽  
Eleni Trikoilidou ◽  
Alexandros Koutelias ◽  
Elisavet Amanatidou

This work presents an innovative approach on aerobic activated sludge (AS) wastewater treatment plants’ (WWTP) design and operation towards more efficient wastewater treatment, minimization of sludge accumulation and significant reduction of excess sludge, with relatively low specific energy consumption. This approach, which is called complete solids retention activated sludge (CRAS) process, was applied on a slaughterhouse’s WWTP and on a fruit processing industry’s WWTP, characterized by high organic and volumetric load respectively, as well as on a municipal WWTP located in Paralimni, Cyprus. The results showed without using sophisticated technologies and processes a more sustainable WWTP operation can be achieved.


2016 ◽  
Vol 11 (2) ◽  
pp. 368-377
Author(s):  
Hasmawaty Hasmawaty

The purpose of this article is to analyze integrated wastewater treatment plant (WWTP) design for Tanjung Api-Api (TAA) agro-industrial area, South Sumatra, Indonesia, using Environmentally Sensitive Investment System (ESIS). This article is based on empirical research that conducted in Banyuasin District, South Sumatera Province, Indonesia. Our result show that wastewater discharge (Q) release into river at E5 has reachton/day and contain 87.16 mg/l TSS. This number does not exceed200 mg/l, TSS threshold for industry area, which regulated by South Sumatra Province through Regulation of the Governor of South Sumatera 18/2005 on Liquid Waste Quality Standard (LWQS). It also produced BOD (100 mg/l) lower than LQWS standard (200 mg/l). Sludge dewatering generate 724,48mg/l/day TSS which can be converted into value-added product. Our WWTP design for TAA area can protect wetland ecosystems in South Sumatra Province. We also give recommendation for TAA multi-stakeholder and propose several topics for further research.


2013 ◽  
Vol 67 (8) ◽  
pp. 1841-1850 ◽  
Author(s):  
Lorenzo Benedetti ◽  
Evangelina Belia ◽  
Katrijn Cierkens ◽  
Tony Flameling ◽  
Bernard De Baets ◽  
...  

This paper illustrates how a dynamic model can be used to evaluate a plant upgrade on the basis of post-upgrade performance data. The case study is that of the Eindhoven wastewater treatment plant upgrade completed in 2006. As a first step, the design process based on a static model was thoroughly analyzed and the choices regarding variability and uncertainty (i.e. safety factors) were made explicit. This involved the interpretation of the design guidelines and other assumptions made by the engineers. As a second step, a (calibrated) dynamic model of the plant was set up, able to reproduce the anticipated variability (duration and frequency). The third step was to define probability density functions for the parameters assumed to be uncertain, and propagate that uncertainty with the dynamic model by means of Monte Carlo simulations. The last step was the statistical evaluation and interpretation of the simulation results. This work should be regarded as a ‘learning exercise’ increasing the understanding of how and to what extent variability and uncertainty are currently incorporated in design guidelines used in practice and how model-based post-project appraisals could be performed.


2013 ◽  
Vol 67 (1) ◽  
pp. 224-231
Author(s):  
C. Walder ◽  
S. Lindtner ◽  
A. Proesl ◽  
F. Klegraf ◽  
N. Weissenbacher

The ATV-A-131 guideline and the design approach published in ‘Wastewater Engineering, Treatment and Reuse (WE)’ are widely used for the design of activated sludge plants. They are both based on simplified steady-state assumptions tailored to the boundary conditions of temperate climates. Using design guidelines beyond the designated temperature range may lead to inappropriate results. The objectives of this paper are (1) to summarise temperature relevant differences between ATV-A-131 and WE; (2) to show the related design components; and (3) to demonstrate a procedure for design parameter adaptation for a full-scale activated sludge plant located in a warm climate region. To gain steady-state data required for wastewater treatment plant (WWTP) design according to ATV-A-131 and WE, full-scale plant data were acquired for a period of 6 months as a basis for analyses and adaptation. Mass balances were calculated for the verification of the measurements and for analysing excess sludge production. The two approaches showed relevant temperature related differences. WE default application resulted in lower deviation in the mass balance results for excess sludge production. However, with the adaptation of the heterotrophic decay rates for both approaches and the inert organic and mineral solids fraction additionally for ATV-A-131, a good fit to the observed excess sludge production could be achieved.


2012 ◽  
Vol 2012 (7) ◽  
pp. 7415-7420
Author(s):  
Lorenzo Benedetti ◽  
Evangelina Belia ◽  
Katrijn Cierkens ◽  
Tony Flameling ◽  
Bernard De Baets ◽  
...  

2012 ◽  
Vol 2012 (12) ◽  
pp. 4239-4249
Author(s):  
Mansour Talebizadeh ◽  
Cristina Martin ◽  
Marc B. Neumann ◽  
Peter A. Vanrolleghem

Sign in / Sign up

Export Citation Format

Share Document