scholarly journals Optimal Selection of Pumps As Turbines in Water Distribution Networks

Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 685
Author(s):  
Francesco Pugliese ◽  
Francesco De Paola ◽  
Nicola Fontana ◽  
Gustavo Marini ◽  
Maurizio Giugni

Pumps As Turbines (PATs) can be installed in Water Distribution Networks (WDNs) to couple pressure regulation and small-scale hydropower generation. The selection of PATs in WDNs needs proper knowledge about both the performances of machines available in the market and the operating conditions of the network. In this paper, a procedure for the preliminary selection of a PAT is proposed, based on the design of the main parameters (the head drop and the produced power at the Best Efficiency Point, the impeller diameter and the rotational speed) to both maximize the producible power and regulate the exceeding pressure.

Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 958 ◽  
Author(s):  
Matteo Postacchini ◽  
Giovanna Darvini ◽  
Fiorenza Finizio ◽  
Leonardo Pelagalli ◽  
Luciano Soldini ◽  
...  

Pump-As-Turbine (PAT) technology is a smart solution to produce energy in a sustainable way at small scale, e.g., through its exploitation in classical Water Distribution Networks (WDNs). PAT application may actually represent a suitable solution to obtain both pressure regulation and electrical energy production. This technology enables one to significantly reduce both design and maintenance costs if compared to traditional turbine applications. In this work, the potential hydropower generation was evaluated through laboratory tests focused on the characterization of a pump working in reverse mode, i.e., as a PAT. Both hydrodynamic (pressure and discharge) and mechanical (rotational speed and torque) conditions were varied during the tests, with the aim to identify the most efficient PAT configurations and provide useful hints for possible real-world applications. The experimental findings confirm the good performances of the PAT system, especially when rotational speed and water demand are, respectively, larger than 850 rpm and 8 L/s, thus leading to efficiencies greater than 50%. Such findings were applied to a small municipality, where daily distribution of pressure and discharge were recorded upstream of the local WDN, where a Pressure Reducing Valve (PRV) is installed. Under the hypothesis of PRV replacement with the tested PAT, three different scenarios were studied, based on the mean recorded water demand and each characterized by specific values of PAT rotational speed. The best performances were observed for the largest tested speeds (1050 and 1250 rpm), which lead to pressure drops smaller than those actually due to the PRV, thus guaranteeing the minimum pressure for users, but also to mechanical powers smaller than 100 W. When a larger mean water demand is assumed, much better performances are reached, especially for large speeds (1250 rpm) that lead to mechanical powers larger than 1 kW combined to head drops a bit larger than those observed using the PRV. A suitable design is thus fundamental for the real-world PAT application.


Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1486
Author(s):  
Francesco Pugliese ◽  
Francesco De Paola ◽  
Nicola Fontana ◽  
Gustavo Marini ◽  
Maurizio Giugni

In this work, a procedure for the optimal design of Pumps As Turbines in Water Distribution Networks was applied, aimed at both maximizing the hydropower generation and exploiting the excess pressure. The design of the main characteristic PAT parameters, namely the flow rate and the head drop at Best Efficiency Point, the rotational speed and the impeller’s diameter was assessed, under the hypothesis of applying the Electrical Regulation. The procedure allowed to estimate both the produced power and the exploited head at any simulated time-step, as well as the overall daily energy, in compliance with the hydraulic and technical constraints of the system. The model was tested on a simplified Water Distribution Network and a preliminary Cost-Benefit analysis was performed, showing interesting reliefs against short Payback Period.


2019 ◽  
Vol 86 ◽  
pp. 70-84 ◽  
Author(s):  
Giacomo Galuppini ◽  
Enrico Creaco ◽  
Chiara Toffanin ◽  
Lalo Magni

Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3098
Author(s):  
Jimmy H. Gutiérrez-Bahamondes ◽  
Daniel Mora-Meliá ◽  
Pedro L. Iglesias-Rey ◽  
F. Javier Martínez-Solano ◽  
Yamisleydi Salgueiro

The investment and operating costs of pumping stations in drinking water distribution networks are some of the highest public costs in urban sectors. Generally, these systems are designed based on extreme scenarios. However, in periods of normal operation, extra energy is produced, thereby generating excess costs. To avoid this problem, this work presents a new methodology for the design of pumping stations. The proposed technique is based on the use of a setpoint curve to optimize the operating and investment costs of a station simultaneously. According to this purpose, a novel mathematical optimization model is developed. The solution output by the model includes the selection of the pumps, the dimensions of pipelines, and the optimal flow distribution among all water sources for a given network. To demonstrate the advantages of using this technique, a case study network is presented. A pseudo-genetic algorithm (PGA) is implemented to resolve the optimization model. Finally, the obtained results show that it is possible to determine the full design and operating conditions required to achieve the lowest cost in a multiple pump station network.


Sign in / Sign up

Export Citation Format

Share Document