scholarly journals From Geometry to Coherent Dissipative Dynamics in Quantum Mechanics

2021 ◽  
Vol 3 (4) ◽  
pp. 664-683
Author(s):  
Hans Cruz-Prado ◽  
Alessandro Bravetti ◽  
Angel Garcia-Chung

Starting from the geometric description of quantum systems, we propose a novel approach to time-independent dissipative quantum processes according to which energy is dissipated but the coherence of the states is preserved. Our proposal consists of extending the standard symplectic picture of quantum mechanics to a contact manifold and then obtaining dissipation by using appropriate contact Hamiltonian dynamics. We work out the case of finite-level systems for which it is shown, by means of the corresponding contact master equation, that the resulting dynamics constitute a viable alternative candidate for the description of this subclass of dissipative quantum systems. As a concrete application, motivated by recent experimental observations, we describe quantum decays in a 2-level system as coherent and continuous processes.

2007 ◽  
Vol 04 (07) ◽  
pp. 1205-1215 ◽  
Author(s):  
KAZUYUKI FUJII

In this paper we present a new algebraic structure (a superhyperbolic system in our terminology) for finite quantum systems, which is a generalization of the usual one in the two-level system. It fits into the so-called generalized Pauli matrices, so they play an important role in theory. Some deep relation to the modified Bessel functions of integer order is pointed out. By taking a skillful limit finite quantum systems become quantum mechanics on the circle developed by Ohnuki and Kitakado.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jonathan Barrett ◽  
Robin Lorenz ◽  
Ognyan Oreshkov

AbstractCausal reasoning is essential to science, yet quantum theory challenges it. Quantum correlations violating Bell inequalities defy satisfactory causal explanations within the framework of classical causal models. What is more, a theory encompassing quantum systems and gravity is expected to allow causally nonseparable processes featuring operations in indefinite causal order, defying that events be causally ordered at all. The first challenge has been addressed through the recent development of intrinsically quantum causal models, allowing causal explanations of quantum processes – provided they admit a definite causal order, i.e. have an acyclic causal structure. This work addresses causally nonseparable processes and offers a causal perspective on them through extending quantum causal models to cyclic causal structures. Among other applications of the approach, it is shown that all unitarily extendible bipartite processes are causally separable and that for unitary processes, causal nonseparability and cyclicity of their causal structure are equivalent.


1997 ◽  
Vol 11 (10) ◽  
pp. 1281-1296 ◽  
Author(s):  
V. I. Man'ko ◽  
G. Marmo ◽  
F. Zaccaria ◽  
E. C. G. Sudarshan

It is shown that for quantum systems the vector field associated with the equations of motion may admit alternative Hamiltonian descriptions, both in the Schrödinger and Heisenberg picture. We illustrate these ambiguities in terms of simple examples.


Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 518 ◽  
Author(s):  
Alessandro Sergi ◽  
Gabriel Hanna ◽  
Roberto Grimaudo ◽  
Antonino Messina

Many open quantum systems encountered in both natural and synthetic situations are embedded in classical-like baths. Often, the bath degrees of freedom may be represented in terms of canonically conjugate coordinates, but in some cases they may require a non-canonical or non-Hamiltonian representation. Herein, we review an approach to the dynamics and statistical mechanics of quantum subsystems embedded in either non-canonical or non-Hamiltonian classical-like baths which is based on operator-valued quasi-probability functions. These functions typically evolve through the action of quasi-Lie brackets and their associated Quantum-Classical Liouville Equations, or through quasi-Lie brackets augmented by dissipative terms. Quasi-Lie brackets possess the unique feature that, while conserving the energy (which the Noether theorem links to time-translation symmetry), they violate the time-translation symmetry of their algebra. This fact can be heuristically understood in terms of the dynamics of the open quantum subsystem. We then describe an example in which a quantum subsystem is embedded in a bath of classical spins, which are described by non-canonical coordinates. In this case, it has been shown that an off-diagonal open-bath geometric phase enters into the propagation of the quantum-classical dynamics. Next, we discuss how non-Hamiltonian dynamics may be employed to generate the constant-temperature evolution of phase space degrees of freedom coupled to the quantum subsystem. Constant-temperature dynamics may be generated by either a classical Langevin stochastic process or a Nosé–Hoover deterministic thermostat. These two approaches are not equivalent but have different advantages and drawbacks. In all cases, the calculation of the operator-valued quasi-probability function allows one to compute time-dependent statistical averages of observables. This may be accomplished in practice using a hybrid Molecular Dynamics/Monte Carlo algorithms, which we outline herein.


2018 ◽  
Vol 98 (5) ◽  
Author(s):  
Vladislav Popkov ◽  
Simon Essink ◽  
Carlo Presilla ◽  
Gunter Schütz

2021 ◽  
Vol 2056 (1) ◽  
pp. 012059
Author(s):  
I N Balaba ◽  
G S Deryabina ◽  
I A Pinchuk ◽  
I V Sergeev ◽  
S B Zabelina

Abstract The article presents a historical overview of the development of the mathematical idea of a quantum computing model - a new computational strategy based on the postulates of quantum mechanics and having advantages over the traditional computational model based on the Turing machine; clarified the features of the operation of multi-qubit quantum systems, which ensure the creation of efficient algorithms; the principles of quantum computing are outlined and a number of efficient quantum algorithms are described that allow solving the problem of exponential growth of the complexity of certain problems.


2020 ◽  
Author(s):  
Markus Luczak-Roesch

In this paper I conceptualise a novel approach for capturing coincidences between events that have not necessarily an observed causal relationship. Building on the Transcendental Information Cascades approach I outline a tensor theory of the interaction between rare micro-level events and macro-level system changes. Afterwards, I discuss a number of application areas that are promising candidates for the validation of the theoretical assumptions outlined here in practice. This is preliminary work that is sought to lay the foundation to discover universal mathematical properties of coincidences that have a measurable impact on the macroscopic state of a complex system and are therefore to be considered meaningful.


Sign in / Sign up

Export Citation Format

Share Document