scholarly journals Characterization of Dislocation Rearrangement in FCC Metals during Work Hardening Using X-ray Diffraction Line-Profile Analysis

2020 ◽  
Vol 4 (4) ◽  
pp. 36
Author(s):  
Koutarou Nakagawa ◽  
Momoki Hayashi ◽  
Kozue Takano-Satoh ◽  
Hirotaka Matsunaga ◽  
Hiroyuki Mori ◽  
...  

Multiplication and rearrangement of dislocations in face-centered cubic (FCC) metals during tensile deformation are affected by grain size, stacking fault energy (SFE), and solute elements. X-ray diffraction (XRD) line-profile analysis can evaluate the dislocation density (ρ) and dislocation arrangement (M) from the strength of the interaction between dislocations. However, the relationship between M and ρ has not been thoroughly addressed. In this study, multiplication and rearrangement of dislocations in FCC metals during tensile deformation was evaluated by XRD line-profile analysis. Furthermore, the effects of grain size, SFE, and solute elements on the extent of dislocation rearrangement were evaluated with varying M values during tensile deformation. M decreased as the dislocation density increased. By contrast, grain size and SFE did not exhibit a significant influence on the obtained M values. The influence of solute species and concentration of solute elements on M changes were also determined. In addition, the relationship between dislocation substructures and M for tensile deformed metals were also explained. Dislocations were loosely distributed at M > 1, and cell walls gradually formed by gathering dislocations at M < 1. While cell walls became thicker with decreasing M in metals with low stacking fault energy, thin cell walls with high dislocation density formed for an M value of 0.3 in metals with high stacking fault energy.

2020 ◽  
Vol 321 ◽  
pp. 03026
Author(s):  
K. Yamanaka ◽  
A. Kuroda ◽  
M. Ito ◽  
M. Mori ◽  
T. Shobu ◽  
...  

In this study, the tensile deformation behavior of an electron beam melted Ti−6Al−4V alloy was examined by in situ X-ray diffraction (XRD) line-profile analysis. The as-built Ti−6Al−4V alloy specimen showed a fine acicular microstructure that was produced through the decomposition of the α′-martensite during the post-melt exposure to high temperatures. Using high-energy synchrotron radiation, XRD line-profile analysis was successfully applied for examining the evolution of dislocation structures not only in the α-matrix but also in the nanosized, low-fraction β-phase precipitates located at the interfaces between the α-laths. The results indicated that the dislocation density was initially higher in the β-phase and an increased dislocation density with increasing applied tensile strain was quantitatively captured in each constitutive phase. It can be thus concluded that the EBM Ti−6Al−4V alloy undergoes a cooperative plastic deformation between the constituent phases in the duplex microstructure. These results also suggested that XRD line-profile analysis combined with highenergy synchrotron XRD measurements can be utilized as a powerful tool for characterizing duplex microstructures in titanium alloys.


2010 ◽  
Vol 25 (2) ◽  
pp. 104-107
Author(s):  
Shigeo Sato ◽  
Yohei Takahashi ◽  
Kazuaki Wagatsuma ◽  
Shigeru Suzuki

The growth of precipitates in a deformed Cu–Ni–Si alloy with an aging treatment and the rearrangement of dislocations were investigated using small-angle X-ray scattering method and XRD line-profile analysis. The small-angle X-ray scattering method was used for characterizing the growth behavior of the precipitates. The results showed that the precipitates grew gradually to a few nanometers in radius when aged under the condition that the alloy exhibited a maximum of the hardness due to precipitation hardening. The growth rate rose from the onset of the overaging, where the hardness started to decrease. The line-profile analysis of copper-based alloy diffraction peaks using modified Williamson–Hall and modified Warren–Averbach procedures yielded a variation in the dislocation densities of the alloy as a function of the aging time. The dislocation density of the alloy before the aging treatment was estimated to be 1.7×1015 m−2 and its high value was held up to the peak-aging time. With the onset of the overaging, however, the dislocation density distinctly decreased by about 1 order of magnitude indicating that a large amount of the dislocations rearranged to release the alloy from the high dislocation-density state. The results suggest that the massive rearrangement of dislocations was accompanied with coarsening of the precipitates.


2021 ◽  
Vol 1016 ◽  
pp. 1223-1228
Author(s):  
Mutsumi Sano ◽  
Sunao Takahashi ◽  
Ayumi Shiro ◽  
Takahisa Shobu ◽  
Kengo Nakada

Dislocation densities of GLIDCOP®, dispersion-strengthened copper with ultra-fine particles of aluminum oxide, were evaluated by employing the X-ray line profile analysis using the modified Williamson-Hall and modified Warren-Averbach methods. X-ray diffraction profiles for GlidCop samples with compressive strains applied at 200oC were measured with synchrotron radiation. The dislocation densities of GlidCop with compressive strain ranging from 0.6 to 4.3% were in the order of 3.2 × 1014–5.8 × 1014 m-2. The dislocation density increased with increasing the compressive strain within the measured strain range.


Sign in / Sign up

Export Citation Format

Share Document