scholarly journals Drought-Induced Reduction in Net Primary Productivity across Mainland China from 1982 to 2015

2018 ◽  
Vol 10 (9) ◽  
pp. 1433 ◽  
Author(s):  
Chengguang Lai ◽  
Jun Li ◽  
Zhaoli Wang ◽  
Xiaoqing Wu ◽  
Zhaoyang Zeng ◽  
...  

Terrestrial net primary productivity (NPP) plays an essential role in the global carbon cycle as well as for climate change. However, in the past three decades, terrestrial ecosystems across mainland China suffered from frequent drought and, to date, the adverse impacts on NPP remain uncertain. This study explored the spatiotemporal features of NPP and discussed the influences of drought on NPP across mainland China from 1982 to 2015 using the Carnegie Ames Stanford Application (CASA) model and the standardized precipitation evapotranspiration index (SPEI). The obtained results indicate that: (1) The total annual NPP across mainland China showed an non-significantly increasing trend from 1982 to 2015, with annual increase of 0.025 Pg C; the spring NPP exhibited a significant increasing trend (0.031 Pg C year−1, p < 0.05) while the summer NPP showed a higher decreasing trend (0.019 Pg C year−1). (2) Most areas of mainland China were spatially dominated by a positive correlation between annual NPP and SPEI and a significant positive correlation was mainly observed for Northern China; specific to the nine sub-regions, annual NPP and SPEI shared similar temporal patterns with a significant positive relation in Northeastern China, Huang-Huai-Hai, Inner Mongolia, and the Gan-Xin Region. (3) During the five typical drought events, more than 23% areas of mainland China experienced drought ravage; the drought events generally caused about 30% of the NPP reduction in most of the sub-regions while the NPP in the Qinghai-Tibet Plateau Region generally decreased by about 10%.

2019 ◽  
Vol 39 (14) ◽  
Author(s):  
戴黎聪 DAI Licong ◽  
郭小伟 GUO Xiaowei ◽  
张法伟 ZHANG Fawei ◽  
柯浔 KE Xun ◽  
曹莹芳 CAO Yingfang ◽  
...  

2020 ◽  
Vol 12 (6) ◽  
pp. 976 ◽  
Author(s):  
Xin Li ◽  
Hongyu Liang ◽  
Weiming Cheng

Atmospheric aerosols can elicit variations in how much solar radiation reaches the ground surface due to scattering and absorption, which may affect plant photosynthesis and carbon uptake in terrestrial ecosystems. In this study, the spatio-temporal variations in aerosol optical depth (AOD) are compared with that in photosynthetically active radiation (PAR) and net primary productivity (NPP) during 2001–2017 in China using multiple remote sensing data. The correlations between them are analyzed at different scales. Overall, the AOD exhibited a northeast-to-southwest decreasing pattern in space. A national increasing trend of 0.004 year−1 and a declining trend of −0.007 year−1 of AOD are observed during 2001–2008 and 2009–2017. The direct PAR (PARdir) and diffuse PAR (PARdif) present consistent and opposite tendency with AOD during two periods, respectively. The total PAR (PARtotal) shows a similar variation pattern with PARdir. In terms of annual variation, the peaks of AOD coincide with the peaks of PARdif and the troughs of PARdir, indicating that aerosols have a significant positive impact on PARdir and a negative impact on PARdif. Furthermore, the PARdir has a stronger negative association with AOD than the positive correlation between PARdif and AOD at national and regional scales, indicating that PARdir is more sensitive to aerosol changes. The NPP has higher values in the east than in the west and exhibits a significant increasing trend of 0.035 gCm−2day−1 after 2008. The NPP has a negative correlation (−0.4–0) with AOD and PARdif and a positive correlation (0–0.4) with PARdir in most areas of China. The area covered by forests has the highest NPP-PAR correlation, indicating that NPP in forests is more sensitive to the PAR than is the NPP in grasslands and croplands. This study is beneficial for interpreting the aerosol-induced PAR impact on plant growth and for predicting plant production on haze days.


2020 ◽  
Vol 12 (7) ◽  
pp. 2849
Author(s):  
Li Yu ◽  
Fengxue Gu ◽  
Mei Huang ◽  
Bo Tao ◽  
Man Hao ◽  
...  

Assessing potential impacts of 1.5 °C and 2 °C global warming and identifying the risks of further 0.5 °C warming are crucial for climate adaptation and disaster risk management. Four earth system models in the Coupled Model Intercomparison Project Phase 5 (CMIP5) and a process-based ecosystem model are used in this study to assess the impacts and potential risks of the two warming targets on the carbon cycle of China’s terrestrial ecosystems. Results show that warming generally stimulates the increase of net primary productivity (NPP) and net ecosystem productivity (NEP) under both representative concentration pathway (RCP) 4.5 and RCP8.5 scenarios. The projected increments of NPP are higher at 2 °C warming than that at 1.5 °C warming for both RCP4.5 and RCP8.5 scenarios; approximately 13% and 19% under RCP4.5, and 12.5% and 20% under RCP8.5 at 1.5 °C and 2 °C warming, respectively. However, the increasing rate of NPP was projected to decline at 2 °C warming under the RCP4.5 scenario, and the further 0.5 °C temperature rising induces the decreased NPP linear slopes in more than 81% areas of China’s ecosystems. The total NEP is projected to be increased by 53% at 1.5 °C, and by 81% at 2 °C warming. NEP was projected to increase approximately by 28% with the additional 0.5 °C warming. Furthermore, the increasing rate of NEP weakens at 2 °C warming, especially under the RCP8.5 scenario. In summary, China’s total NPP and NEP were projected to increase under both 1.5 °C and 2 °C warming scenarios, although adverse effects (i.e., the drop of NPP growth and the reduction of carbon sequestration capacity) would occur in some regions such as northern China in the process of global warming.


2017 ◽  
Vol 350 ◽  
pp. 55-68 ◽  
Author(s):  
Qingling Sun ◽  
Baolin Li ◽  
Tao Zhang ◽  
Yecheng Yuan ◽  
Xizhang Gao ◽  
...  

Atmosphere ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 71 ◽  
Author(s):  
Xiaofei Ma ◽  
Tianci Huo ◽  
Chengyi Zhao ◽  
Wei Yan ◽  
Xun Zhang

Empirical evidence suggests that variations in climate affect the net primary productivity (NPP) across sandy areas over time. However, little is known about the relative impacts of climate change on NPP with global warming of 1.5 and 2.0 °C (GW_1.5 °C_2.0 °C) relative to pre-industrial levels. Here, we used a new set of climate simulations from four Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP 2b) datasets, modified the Carnegie-Ames-Stanford approach (CASA) model and assessed the spatio-temporal variation in NPP in sandy areas of northern China (SAONC). Compared with the reference period (RP, 1986–2005), the NPP variation under four emission scenarios showed clear rising trends and increased most significantly under RCP8.5 with an annual average increase of 2.34 g C/m2. The estimated annual NPP under global warming of 1.5 °C (GW_1.5 °C) increased by 14.17, 10.72, 8.57, and 26.68% in different emission scenarios, and under global warming of 2.0 °C (GW_2.0 °C) it increased by 20.87, 24.01, 29.31, and 39.94%, respectively. In terms of seasonal change, the NPP value under the four emission scenarios changed most significantly in the summer relative to RP, exhibiting a growth of 16.48%. Temperature changes (p > 0.614) had a greater impact on NPP growth than precipitation (p > 0.017), but solar radiation showed a certain negative impact in the middle- and low-latitude regions. NPP showed an increasing trend that changed from the southeast to the central and western regions at GW_1.5 to GW_2.0 °C. NPP was consistent with the spatial change in climate factors and had a promoting role in high latitudes in SAONC, but it was characterized by a certain inhibitory effect at middle and low latitudes in SAONC. The uncertainty of NPP under the four models ranged from 16.29 to 26.52%. Our findings suggest that the impact of GW_1.5 °C is relatively high compared with the current conditions, whereas GW_2.0 °C implies significantly lower projected NPP growth in all areas.


Sign in / Sign up

Export Citation Format

Share Document