scholarly journals A Spectral–Temporal Patch-Based Missing Area Reconstruction for Time-Series Images

2018 ◽  
Vol 10 (10) ◽  
pp. 1560 ◽  
Author(s):  
Wei Wu ◽  
Luoqi Ge ◽  
Jiancheng Luo ◽  
Ruohong Huan ◽  
Yingpin Yang

Clouds, cloud shadows (CCS), and numerous other factors will cause a missing data problem in passive remote sensing images. A well-known reconstruction method is the selection of a similar pixel (with an additional clear reference image) from the remaining clear part of an image to replace the missing pixel. Due to the merit of filling the missing value using a pixel acquired on the same image with the same sensor and the same date, this method is suitable for time-series applications when a time-series profile-based similar measure is utilized for selecting the similar pixel. Since the similar pixel is independently selected, the improper reference pixel or various accuracies obtained by different land covers causes the problem of salt-and-pepper noise in the reconstructed part of an image. To overcome these problems, this paper presents a spectral–temporal patch (STP)-based missing area reconstruction method for time-series images. First, the STP, the pixels of which have similar spectral and temporal evolution characteristics, is extracted using multi-temporal image segmentation. However, some STP have Missing Observations (STPMO) in the time series, which should be reconstructed. Next, for an STPMO, the most similar STP is selected as the reference STP; then, the mean and standard deviation of the STPMO is predicted using a linear regression method with the reference STP. Finally, the textural information, which is denoted by the spatial configuration of color or intensities of neighboring pixels, is extracted from the clear temporal-adjacent STP and “injected” into the missing area to obtain synthetic cloud-free images. We performed an STP-based missing area reconstruction experiment in Jiangzhou, Chongzuo, Guangxi with time-series images acquired by wide field view (WFV) onboard Chinese Gao Fen 1 on 12 different dates. The results indicate that the proposed method can effectively recover the missing information without salt-and-pepper noise in the reconstructed area; also, the reconstructed part of the image is consistent with the clear part without a false edge. The results confirm that the spectral information from the remaining clear part of the same image and textural information from the temporal-adjacent image can create seamless time-series images.

2008 ◽  
Vol 4 (S253) ◽  
pp. 370-373
Author(s):  
Dae-Won Kim ◽  
Pavlos Protopapas ◽  
Rahul Dave

AbstractWe present an algorithm for the removal of trends in time series data. The trends could be caused by various systematic and random noise sources such as cloud passages, change of airmass or CCD noise. In order to determine the trends, we select template stars based on a hierarchical clustering algorithm. The hierarchy tree is constructed using the similarity matrix of light curves of stars whose elements are the Pearson correlation values. A new bottom-up merging algorithm is developed to extract clusters of template stars that are highly correlated among themselves, and may thus be used to identify the trends. We then use the multiple linear regression method to de-trend all individual light curves based on these determined trends. Experimental results with simulated light curves which contain artificial trends and events are presented. We also applied our algorithm to TAOS (Taiwan-American Occultation Survey) wide field data observed with a 0.5m f/1.9 telescope equipped with 2k by 2k CCD. With our approach, we successfully removed trends and increased signal to noise in TAOS light curves.


2022 ◽  
Vol 163 (2) ◽  
pp. 47
Author(s):  
Hunter Brooks ◽  
J. Davy Kirkpatrick ◽  
Dan Caselden ◽  
Adam C. Schneider ◽  
Aaron M. Meisner ◽  
...  

Abstract We present the discovery of CWISE J052306.42−015355.4, which was found as a faint, significant proper-motion object (0.″52 ± 0.″08 yr−1) using machine-learning tools on the unWISE re-processing of time series images from the Wide-field Infrared Survey Explorer. Using the CatWISE2020 W1 and W2 magnitudes along with a J-band detection from the VISTA Hemisphere Survey, the location of CWISE J052306.42−015355.4 on the W1 − W2 versus J − W2 diagram best matches that of other known, or suspected, extreme T subdwarfs. As there is currently very little knowledge concerning extreme T subdwarfs we estimate a rough distance of ≤68 pc, which results in a tangential velocity of ≤167 km s−1, both of which are tentative. A measured parallax is greatly needed to test these values. We also estimate a metallicity of −1.5 < [M/H] < −0.5 using theoretical predictions.


2019 ◽  
Vol 118 (7) ◽  
pp. 73-76
Author(s):  
Sharanabasappa ◽  
P Ravibabu

Nowadays, during the process of Image acquisition and transmission, image information data can be corrupted by impulse noise. That noise is classified as salt and pepper noise and random impulse noise depending on the noise values. A median filter is widely used digital nonlinear filter  in edge preservation, removing of impulse noise and smoothing of signals. Median filter is the widely used to remove salt and pepper noise than rank order filter, morphological filter, and unsharp masking filter. The median filter replaces a sample with the middle value among all the samples present inside the sample window. A median filter will be of two types depending on the number of samples processed at the same cycle i.e, bit level architecture and word level architecture.. In this paper, Carry Look-ahead Adder median filter method will be introduced to improve the hardware resources used in median filter architecture for 5 window and 9 window for 8 bit and 16 bit median filter architecture.


2013 ◽  
Vol 32 (5) ◽  
pp. 1293-1295
Author(s):  
Yuan-hua GUO ◽  
Xiao-rong HOU

Sign in / Sign up

Export Citation Format

Share Document