scholarly journals Effects of Sample Plot Size and GPS Location Errors on Aboveground Biomass Estimates from LiDAR in Tropical Dry Forests

2018 ◽  
Vol 10 (10) ◽  
pp. 1586 ◽  
Author(s):  
José Hernández-Stefanoni ◽  
Gabriela Reyes-Palomeque ◽  
Miguel Castillo-Santiago ◽  
Stephanie George-Chacón ◽  
Astrid Huechacona-Ruiz ◽  
...  

Accurate estimates of above ground biomass (AGB) are needed for monitoring carbon in tropical forests. LiDAR data can provide precise AGB estimations because it can capture the horizontal and vertical structure of vegetation. However, the accuracy of AGB estimations from LiDAR is affected by a co-registration error between LiDAR data and field plots resulting in spatial discrepancies between LiDAR and field plot data. Here, we evaluated the impacts of plot location error and plot size on the accuracy of AGB estimations predicted from LiDAR data in two types of tropical dry forests in Yucatán, México. We sampled woody plants of three size classes in 29 nested plots (80 m2, 400 m2 and 1000 m2) in a semi-deciduous forest (Kiuic) and 28 plots in a semi-evergreen forest (FCP) and estimated AGB using local allometric equations. We calculated several LiDAR metrics from airborne data and used a Monte Carlo simulation approach to assess the influence of plot location errors (2 to 10 m) and plot size on ABG estimations from LiDAR using regression analysis. Our results showed that the precision of AGB estimations improved as plot size increased from 80 m2 to 1000 m2 (R2 = 0.33 to 0.75 and 0.23 to 0.67 for Kiuic and FCP respectively). We also found that increasing GPS location errors resulted in higher AGB estimation errors, especially in the smallest sample plots. In contrast, the largest plots showed consistently lower estimation errors that varied little with plot location error. We conclude that larger plots are less affected by co-registration error and vegetation conditions, highlighting the importance of selecting an appropriate plot size for field forest inventories used for estimating biomass.

2019 ◽  
Vol 92 (5) ◽  
pp. 599-615 ◽  
Author(s):  
Gabriela Reyes-Palomeque ◽  
Juan Manuel Dupuy ◽  
Kristofer D Johnson ◽  
Miguel Angel Castillo-Santiago ◽  
J Luis Hernández-Stefanoni

Abstract Knowledge of the spatial distribution of aboveground biomass (AGB) is crucial to guide forest conservation and management to maintain carbon stocks. LiDAR has been highly successful for this purpose, but has limited availability. Very-high resolution (<1 m) orthophotos can also be used to estimate AGB because they allow a fine distinction of forest canopy grain. We evaluated the separate and joint performance of orthophotos and LiDAR data to estimate AGB in two types of tropical dry forests in the Yucatan Peninsula. Woody plants were surveyed in twenty 0.1 ha plots in a semideciduous forest at Kaxil Kiuic Biocultural Reserve (RBKK) and 28 plots in a semievergreen forest at Felipe Carrillo Puerto (FCP). We fitted three regression models: one based on LiDAR data, another based on orthophoto variables calculated for forest canopy and canopy opening fractions, and a third model that combined both sets of variables. Variation in AGB was decomposed into LiDAR, orthophotos and joint components using variation-partitioning analyses. In FCP, regression models using LiDAR data only showed higher fit (R2 = 0.82) than orthophoto variables only (R2 = 0.70). In contrast, orthophotos had a slightly higher fit (R2 = 0.91) than LiDAR (R2 = 0.88) in RBKK, because orthophoto variables characterize very well the horizontal structure of canopies on this site. The model that combined both data sets showed a better fit (R2 = 0.85) only in FCP, which has a more complex forest structure. The largest percentage of AGB variation (88 per cent in RBKK and 67 per cent in FCP) was explained by the joint contribution of LiDAR and orthophotos. We conclude that both LiDAR and orthophotos provide accurate estimation of AGB, but their relative performance varies with forest type and structural complexity. Combining the two sets of variables can further improve the accuracy of AGB estimation, particularly in forests with complex vegetation structure.


2018 ◽  
Author(s):  
Luis Daniel Avila Cabadilla ◽  
Mariana Álvarez

2021 ◽  
Author(s):  
Bonnie G. Waring ◽  
Mark E. De Guzman ◽  
Dan V. Du ◽  
Juan M. Dupuy ◽  
Maga Gei ◽  
...  

2021 ◽  
Author(s):  
Fabián Alejandro Rubalcava‐Castillo ◽  
Joaquín Sosa‐Ramírez ◽  
José de Jesús Luna‐Ruíz ◽  
Arturo Gerardo Valdivia‐Flores ◽  
Luis Ignacio Íñiguez‐Dávalos

Author(s):  
Marcos André Moura Dias ◽  
Claudia Silva Gomes Bomfim ◽  
Dalila Ribeiro Rodrigues ◽  
Aleksandro Ferreira da Silva ◽  
Jéssica Caroline Souza Santos ◽  
...  

2019 ◽  
Vol 221 ◽  
pp. 707-721 ◽  
Author(s):  
Vaughn Smith ◽  
Carlos Portillo-Quintero ◽  
Arturo Sanchez-Azofeifa ◽  
Jose L. Hernandez-Stefanoni

Insects ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 103
Author(s):  
Robin Casalla Daza ◽  
Judith Korb

The mechanisms that structure species communities are still debated. We addressed this question for termite assemblages from tropical dry forests in Colombia. These forests are endangered and poorly understood ecosystems and termites are important ecosystem engineers in the tropics. Using biodiversity and environmental data, combined with phylogenetic community analyses, trait mapping, and stable isotopes studies, we investigated the termite community composition of three protected dry forests in Colombia. Our data suggest that the structuring mechanisms differed between sites. Phylogenetic overdispersion of termite assemblages correlated with decreasing rainfall and elevation and increasing temperature. Food niche traits—classified as feeding groups and quantified by δ15N‰ and δ13C‰ isotope signatures—were phylogenetically conserved. Hence, the overdispersion pattern implies increasing interspecific competition with decreasing drier and warmer conditions, which is also supported by fewer species occurring at the driest site. Our results are in line with a hypothesis that decreased biomass production limits resource availability for termites, which leads to competition. Along with this comes a diet shift: termites from drier plots had higher δ13C signatures, reflecting higher δ13C values in the litter and more C4 plants. Our study shows how a phylogenetic community approach combined with trait analyses can contribute to gaining the first insights into mechanisms structuring whole termite assemblages.


Sign in / Sign up

Export Citation Format

Share Document