scholarly journals Hybrid Collaborative Representation for Remote-Sensing Image Scene Classification

2018 ◽  
Vol 10 (12) ◽  
pp. 1934 ◽  
Author(s):  
Bao-Di Liu ◽  
Wen-Yang Xie ◽  
Jie Meng ◽  
Ye Li ◽  
Yanjiang Wang

In recent years, the collaborative representation-based classification (CRC) method has achieved great success in visual recognition by directly utilizing training images as dictionary bases. However, it describes a test sample with all training samples to extract shared attributes and does not consider the representation of the test sample with the training samples in a specific class to extract the class-specific attributes. For remote-sensing images, both the shared attributes and class-specific attributes are important for classification. In this paper, we propose a hybrid collaborative representation-based classification approach. The proposed method is capable of improving the performance of classifying remote-sensing images by embedding the class-specific collaborative representation to conventional collaborative representation-based classification. Moreover, we extend the proposed method to arbitrary kernel space to explore the nonlinear characteristics hidden in remote-sensing image features to further enhance classification performance. Extensive experiments on several benchmark remote-sensing image datasets were conducted and clearly demonstrate the superior performance of our proposed algorithm to state-of-the-art approaches.

2021 ◽  
Vol 13 (22) ◽  
pp. 4528
Author(s):  
Xin Yang ◽  
Lei Hu ◽  
Yongmei Zhang ◽  
Yunqing Li

Remote sensing image change detection (CD) is an important task in remote sensing image analysis and is essential for an accurate understanding of changes in the Earth’s surface. The technology of deep learning (DL) is becoming increasingly popular in solving CD tasks for remote sensing images. Most existing CD methods based on DL tend to use ordinary convolutional blocks to extract and compare remote sensing image features, which cannot fully extract the rich features of high-resolution (HR) remote sensing images. In addition, most of the existing methods lack robustness to pseudochange information processing. To overcome the above problems, in this article, we propose a new method, namely MRA-SNet, for CD in remote sensing images. Utilizing the UNet network as the basic network, the method uses the Siamese network to extract the features of bitemporal images in the encoder separately and perform the difference connection to better generate difference maps. Meanwhile, we replace the ordinary convolution blocks with Multi-Res blocks to extract spatial and spectral features of different scales in remote sensing images. Residual connections are used to extract additional detailed features. To better highlight the change region features and suppress the irrelevant region features, we introduced the Attention Gates module before the skip connection between the encoder and the decoder. Experimental results on a public dataset of remote sensing image CD show that our proposed method outperforms other state-of-the-art (SOTA) CD methods in terms of evaluation metrics and performance.


Author(s):  
X. J. Shan ◽  
P. Tang

Given the influences of illumination, imaging angle, and geometric distortion, among others, false matching points still occur in all image registration algorithms. Therefore, false matching points detection is an important step in remote sensing image registration. Random Sample Consensus (RANSAC) is typically used to detect false matching points. However, RANSAC method cannot detect all false matching points in some remote sensing images. Therefore, a robust false matching points detection method based on Knearest- neighbour (K-NN) graph (KGD) is proposed in this method to obtain robust and high accuracy result. The KGD method starts with the construction of the K-NN graph in one image. K-NN graph can be first generated for each matching points and its K nearest matching points. Local transformation model for each matching point is then obtained by using its K nearest matching points. The error of each matching point is computed by using its transformation model. Last, L matching points with largest error are identified false matching points and removed. This process is iterative until all errors are smaller than the given threshold. In addition, KGD method can be used in combination with other methods, such as RANSAC. Several remote sensing images with different resolutions and terrains are used in the experiment. We evaluate the performance of KGD method, RANSAC + KGD method, RANSAC, and Graph Transformation Matching (GTM). The experimental results demonstrate the superior performance of the KGD and RANSAC + KGD methods.


2019 ◽  
Vol 11 (5) ◽  
pp. 518 ◽  
Author(s):  
Bao-Di Liu ◽  
Jie Meng ◽  
Wen-Yang Xie ◽  
Shuai Shao ◽  
Ye Li ◽  
...  

At present, nonparametric subspace classifiers, such as collaborative representation-based classification (CRC) and sparse representation-based classification (SRC), are widely used in many pattern-classification and -recognition tasks. Meanwhile, the spatial pyramid matching (SPM) scheme, which considers spatial information in representing the image, is efficient for image classification. However, for SPM, the weights to evaluate the representation of different subregions are fixed. In this paper, we first introduce the spatial pyramid matching scheme to remote-sensing (RS)-image scene-classification tasks to improve performance. Then, we propose a weighted spatial pyramid matching collaborative-representation-based classification method, combining the CRC method with the weighted spatial pyramid matching scheme. The proposed method is capable of learning the weights of different subregions in representing an image. Finally, extensive experiments on several benchmark remote-sensing-image datasets were conducted and clearly demonstrate the superior performance of our proposed algorithm when compared with state-of-the-art approaches.


2019 ◽  
Vol 11 (20) ◽  
pp. 2349 ◽  
Author(s):  
Zhengyuan Zhang ◽  
Wenhui Diao ◽  
Wenkai Zhang ◽  
Menglong Yan ◽  
Xin Gao ◽  
...  

Significant progress has been made in remote sensing image captioning by encoder-decoder frameworks. The conventional attention mechanism is prevalent in this task but still has some drawbacks. The conventional attention mechanism only uses visual information about the remote sensing images without considering using the label information to guide the calculation of attention masks. To this end, a novel attention mechanism, namely Label-Attention Mechanism (LAM), is proposed in this paper. LAM additionally utilizes the label information of high-resolution remote sensing images to generate natural sentences to describe the given images. It is worth noting that, instead of high-level image features, the predicted categories’ word embedding vectors are adopted to guide the calculation of attention masks. Representing the content of images in the form of word embedding vectors can filter out redundant image features. In addition, it can also preserve pure and useful information for generating complete sentences. The experimental results from UCM-Captions, Sydney-Captions and RSICD demonstrate that LAM can improve the model’s performance for describing high-resolution remote sensing images and obtain better S m scores compared with other methods. S m score is a hybrid scoring method derived from the AI Challenge 2017 scoring method. In addition, the validity of LAM is verified by the experiment of using true labels.


Open Physics ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 871-878
Author(s):  
Yijun Liu ◽  
Ziwen Zhang ◽  
Feng Li

Abstract In key frame extraction of multi-resolution remote sensing image using traditional key frame image feature extraction method, only the feature information of remote sensing images, rather than cluster operation of the remote sensing images is considered, which leads to low efficiency and poor quality of extraction results. To this end, the key frame extraction algorithm of multi-resolution remote sensing image under quality constraint was proposed. Through similarity between image features and the selected image frame, rough key frame can be extracted. On this basis, the key frame extraction of multi resolution remote sensing image based on quality constraints was used to perform clustering operation for multi-resolution remote sensing image corresponding to rough key frame, which shortened the time length for retrieval of key frame image. According to the clustering results, multi-resolution remote sensing images were divided into several clusters. The key frame of each cluster can be obtained by calculating the distance between remote sensing image and cluster center. For key frames that had been determined, their quality was evaluated to meet standard, so as to realize effective extraction of key frame of multi-resolution remote sensing images. The experimental results show that the proposed method can significantly improve the quality of key frame extraction of multi-resolution remote sensing images.


Author(s):  
Kun Yang ◽  
Anning Pan ◽  
Yang Yang ◽  
Su Zhang ◽  
Sim Heng Ong ◽  
...  

Remote sensing image registration plays an important role in military and civilian fields, such as natural disaster damage assessment, military damage assessment and ground targets identification, etc. However, due to the ground relief variations and imaging viewpoint changes, non-rigid geometric distortion occurs between remote sensing images with different viewpoint, which further increases the difficulty of remote sensing image registration. To address the problem, we propose a multi-viewpoint remote sensing image registration method which contains the following contributions. (i) A multiple features based finite mixture model is constructed for dealing with different types of image features. (ii) Three features are combined and substituted into the mixture model to form a feature complementation, i.e., the Euclidean distance and shape context are used to measure the similarity of geometric structure, and the SIFT (scale-invariant feature transform) distance which is endowed with the intensity information is used to measure the scale space extrema. (iii) To prevent the ill-posed problem, a geometric constraint term is introduced into the L2E-based energy function for better behaving the non-rigid transformation. We evaluated the performances of the proposed method by three series of remote sensing images obtained from the unmanned aerial vehicle (UAV) and Google Earth, and compared with five state-of-the-art methods where our method shows the best alignments in most cases.


2018 ◽  
Vol 10 (12) ◽  
pp. 1893 ◽  
Author(s):  
Wenjia Xu ◽  
Guangluan Xu ◽  
Yang Wang ◽  
Xian Sun ◽  
Daoyu Lin ◽  
...  

The spatial resolution and clarity of remote sensing images are crucial for many applications such as target detection and image classification. In the last several decades, tremendous image restoration tasks have shown great success in ordinary images. However, since remote sensing images are more complex and more blurry than ordinary images, most of the existing methods are not good enough for remote sensing image restoration. To address such problem, we propose a novel method named deep memory connected network (DMCN) based on the convolutional neural network to reconstruct high-quality images. We build local and global memory connections to combine image detail with global information. To further reduce parameters and ease time consumption, we propose Downsampling Units, shrinking the spatial size of feature maps. We verify its capability on two representative applications, Gaussian image denoising and single image super-resolution (SR). DMCN is tested on three remote sensing datasets with various spatial resolution. Experimental results indicate that our method yields promising improvements and better visual performance over the current state-of-the-art. The PSNR and SSIM improvements over the second best method are up to 0.3 dB.


2014 ◽  
Vol 602-605 ◽  
pp. 1864-1867
Author(s):  
Hong Yu Chen ◽  
Xiao Fei Shi ◽  
Lei Feng ◽  
Yue Long Zhang ◽  
Yan Hua Li

Misjudgment often occurred in low contrast remote sensing images, because most widely used image segmentation algorithms often have a larger threshold. To overcome this problem, a novel coastline detection algorithm is proposed. A restriction function is involved into conventional iterative selection process. According to langrage multiplier, a modified iterative selection model is formulated. This modified method utilizes the gradient of images to obtain an optimal threshold. A region grouping rule is proposed to distinguish land and sea. Experimental results show superior performance of proposed method in terms of accuracy. As an application, our method has been applied to extract the coastline of the remote sensing image with promising results.


2020 ◽  
Vol 13 (1) ◽  
pp. 62
Author(s):  
Linshu Hu ◽  
Mengjiao Qin ◽  
Feng Zhang ◽  
Zhenhong Du ◽  
Renyi Liu

Image enhancement (IE) technology can help enhance the brightness of remote-sensing images to obtain better interpretation and visualization effects. Convolutional neural networks (CNN), such as the Low-light CNN (LLCNN) and Super-resolution CNN (SRCNN), have achieved great success in image enhancement, image super resolution, and other image-processing applications. Therefore, we adopt CNN to propose a new neural network architecture with end-to-end strategy for low-light remote-sensing IE, named remote-sensing CNN (RSCNN). In RSCNN, an upsampling operator is adopted to help learn more multi-scaled features. With respect to the lack of labeled training data in remote-sensing image datasets for IE, we use real natural image patches to train firstly and then perform fine-tuning operations with simulated remote-sensing image pairs. Reasonably designed experiments are carried out, and the results quantitatively show the superiority of RSCNN in terms of structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR) over conventional techniques for low-light remote-sensing IE. Furthermore, the results of our method have obvious qualitative advantages in denoising and maintaining the authenticity of colors and textures.


Author(s):  
Jing Zhang ◽  
Qianlan Zhou ◽  
Li Zhuo ◽  
Wenhao Geng ◽  
Suyu Wang

With the rapid development of remote sensing technology, searching the similar image is a challenge for hyperspectral remote sensing image processing. Meanwhile, the dramatic growth in the amount of hyperspectral remote sensing data has stimulated considerable research on content-based image retrieval (CBIR) in the field of remote sensing technology. Although many CBIR systems have been developed, few studies focused on the hyperspectral remote sensing images. A CBIR system for hyperspectral remote sensing image using endmember extraction is proposed in this paper. The main contributions of our method are that: (1) the endmembers as the spectral features are extracted from hyperspectral remote sensing image by improved automatic pixel purity index (APPI) algorithm; (2) the spectral information divergence and spectral angle match (SID–SAM) mixed measure method is utilized as a similarity measurement between hyperspectral remote sensing images. At last, the images are ranked with descending and the top-[Formula: see text] retrieved images are returned. The experimental results on NASA datasets show that our system can yield a superior performance.


Sign in / Sign up

Export Citation Format

Share Document