scholarly journals Key Frame Extraction of Multi-Resolution Remote Sensing Images Under Quality Constraint

Open Physics ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 871-878
Author(s):  
Yijun Liu ◽  
Ziwen Zhang ◽  
Feng Li

Abstract In key frame extraction of multi-resolution remote sensing image using traditional key frame image feature extraction method, only the feature information of remote sensing images, rather than cluster operation of the remote sensing images is considered, which leads to low efficiency and poor quality of extraction results. To this end, the key frame extraction algorithm of multi-resolution remote sensing image under quality constraint was proposed. Through similarity between image features and the selected image frame, rough key frame can be extracted. On this basis, the key frame extraction of multi resolution remote sensing image based on quality constraints was used to perform clustering operation for multi-resolution remote sensing image corresponding to rough key frame, which shortened the time length for retrieval of key frame image. According to the clustering results, multi-resolution remote sensing images were divided into several clusters. The key frame of each cluster can be obtained by calculating the distance between remote sensing image and cluster center. For key frames that had been determined, their quality was evaluated to meet standard, so as to realize effective extraction of key frame of multi-resolution remote sensing images. The experimental results show that the proposed method can significantly improve the quality of key frame extraction of multi-resolution remote sensing images.

2019 ◽  
Vol 11 (4) ◽  
pp. 430 ◽  
Author(s):  
Yunyun Dong ◽  
Weili Jiao ◽  
Tengfei Long ◽  
Lanfa Liu ◽  
Guojin He ◽  
...  

Feature matching via local descriptors is one of the most fundamental problems in many computer vision tasks, as well as in the remote sensing image processing community. For example, in terms of remote sensing image registration based on the feature, feature matching is a vital process to determine the quality of transform model. While in the process of feature matching, the quality of feature descriptor determines the matching result directly. At present, the most commonly used descriptor is hand-crafted by the designer’s expertise or intuition. However, it is hard to cover all the different cases, especially for remote sensing images with nonlinear grayscale deformation. Recently, deep learning shows explosive growth and improves the performance of tasks in various fields, especially in the computer vision community. Here, we created remote sensing image training patch samples, named Invar-Dataset in a novel and automatic way, then trained a deep learning convolutional neural network, named DescNet to generate a robust feature descriptor for feature matching. A special experiment was carried out to illustrate that our created training dataset was more helpful to train a network to generate a good feature descriptor. A qualitative experiment was then performed to show that feature descriptor vector learned by the DescNet could be used to register remote sensing images with large gray scale difference successfully. A quantitative experiment was then carried out to illustrate that the feature vector generated by the DescNet could acquire more matched points than those generated by hand-crafted feature Scale Invariant Feature Transform (SIFT) descriptor and other networks. On average, the matched points acquired by DescNet was almost twice those acquired by other methods. Finally, we analyzed the advantages of our created training dataset Invar-Dataset and DescNet and gave the possible development of training deep descriptor network.


2018 ◽  
Vol 10 (12) ◽  
pp. 1934 ◽  
Author(s):  
Bao-Di Liu ◽  
Wen-Yang Xie ◽  
Jie Meng ◽  
Ye Li ◽  
Yanjiang Wang

In recent years, the collaborative representation-based classification (CRC) method has achieved great success in visual recognition by directly utilizing training images as dictionary bases. However, it describes a test sample with all training samples to extract shared attributes and does not consider the representation of the test sample with the training samples in a specific class to extract the class-specific attributes. For remote-sensing images, both the shared attributes and class-specific attributes are important for classification. In this paper, we propose a hybrid collaborative representation-based classification approach. The proposed method is capable of improving the performance of classifying remote-sensing images by embedding the class-specific collaborative representation to conventional collaborative representation-based classification. Moreover, we extend the proposed method to arbitrary kernel space to explore the nonlinear characteristics hidden in remote-sensing image features to further enhance classification performance. Extensive experiments on several benchmark remote-sensing image datasets were conducted and clearly demonstrate the superior performance of our proposed algorithm to state-of-the-art approaches.


2021 ◽  
Vol 13 (22) ◽  
pp. 4528
Author(s):  
Xin Yang ◽  
Lei Hu ◽  
Yongmei Zhang ◽  
Yunqing Li

Remote sensing image change detection (CD) is an important task in remote sensing image analysis and is essential for an accurate understanding of changes in the Earth’s surface. The technology of deep learning (DL) is becoming increasingly popular in solving CD tasks for remote sensing images. Most existing CD methods based on DL tend to use ordinary convolutional blocks to extract and compare remote sensing image features, which cannot fully extract the rich features of high-resolution (HR) remote sensing images. In addition, most of the existing methods lack robustness to pseudochange information processing. To overcome the above problems, in this article, we propose a new method, namely MRA-SNet, for CD in remote sensing images. Utilizing the UNet network as the basic network, the method uses the Siamese network to extract the features of bitemporal images in the encoder separately and perform the difference connection to better generate difference maps. Meanwhile, we replace the ordinary convolution blocks with Multi-Res blocks to extract spatial and spectral features of different scales in remote sensing images. Residual connections are used to extract additional detailed features. To better highlight the change region features and suppress the irrelevant region features, we introduced the Attention Gates module before the skip connection between the encoder and the decoder. Experimental results on a public dataset of remote sensing image CD show that our proposed method outperforms other state-of-the-art (SOTA) CD methods in terms of evaluation metrics and performance.


2019 ◽  
Vol 11 (20) ◽  
pp. 2349 ◽  
Author(s):  
Zhengyuan Zhang ◽  
Wenhui Diao ◽  
Wenkai Zhang ◽  
Menglong Yan ◽  
Xin Gao ◽  
...  

Significant progress has been made in remote sensing image captioning by encoder-decoder frameworks. The conventional attention mechanism is prevalent in this task but still has some drawbacks. The conventional attention mechanism only uses visual information about the remote sensing images without considering using the label information to guide the calculation of attention masks. To this end, a novel attention mechanism, namely Label-Attention Mechanism (LAM), is proposed in this paper. LAM additionally utilizes the label information of high-resolution remote sensing images to generate natural sentences to describe the given images. It is worth noting that, instead of high-level image features, the predicted categories’ word embedding vectors are adopted to guide the calculation of attention masks. Representing the content of images in the form of word embedding vectors can filter out redundant image features. In addition, it can also preserve pure and useful information for generating complete sentences. The experimental results from UCM-Captions, Sydney-Captions and RSICD demonstrate that LAM can improve the model’s performance for describing high-resolution remote sensing images and obtain better S m scores compared with other methods. S m score is a hybrid scoring method derived from the AI Challenge 2017 scoring method. In addition, the validity of LAM is verified by the experiment of using true labels.


Author(s):  
Tong Wang ◽  
Hemeng Yang ◽  
Ling Zhu ◽  
Yazhou Fan ◽  
Xue Yang ◽  
...  

Remote sensing technology is an effective tool for sensing the earth’s surface. With the continuous improvement of remote sensing technology, remote sensing detectors can obtain more spectral and spatial information, including clear feature contours, complex texture features and spatial layout rules. This information was detected in mineral resources. Surface substance identification, water pollution information monitoring and many other aspects have played an important role. The coding algorithm and defects, storage algorithm and interference from atmospheric cloud radiation information during the imaging process lead to varying degrees of distortion and deterioration of remote sensing images during imaging, transmission and storage. This makes it difficult to process, analyze and apply remote sensing images. Therefore, the design of a reasonable remote sensing image quality evaluation method is not only conducive to the remote sensing image quality evaluation in the real-time processing system of remote sensing image, but also conducive to the optimization of remote sensing image system and image processing algorithm. The application is worthwhile. In this paper, the deteriorating features of remote sensing images will change the statistical distribution. We propose a method for evaluating the quality of remote sensing images in depth learning. Feature learning and blurring as well as noise intensity classification for image remote sensing using convolutional neural network are carried out. The evaluation model is modified by masking effect and perceptual weighting factor, and the quality evaluation results of remote sensing images are obtained according to human vision. The research shows that this method can effectively solve the problem of removing and evaluating the noise of remote sensing image, and can effectively and accurately evaluate the quality of remote sensing image. It is also consistent with subjective assessment and human perception.


Author(s):  
Kun Yang ◽  
Anning Pan ◽  
Yang Yang ◽  
Su Zhang ◽  
Sim Heng Ong ◽  
...  

Remote sensing image registration plays an important role in military and civilian fields, such as natural disaster damage assessment, military damage assessment and ground targets identification, etc. However, due to the ground relief variations and imaging viewpoint changes, non-rigid geometric distortion occurs between remote sensing images with different viewpoint, which further increases the difficulty of remote sensing image registration. To address the problem, we propose a multi-viewpoint remote sensing image registration method which contains the following contributions. (i) A multiple features based finite mixture model is constructed for dealing with different types of image features. (ii) Three features are combined and substituted into the mixture model to form a feature complementation, i.e., the Euclidean distance and shape context are used to measure the similarity of geometric structure, and the SIFT (scale-invariant feature transform) distance which is endowed with the intensity information is used to measure the scale space extrema. (iii) To prevent the ill-posed problem, a geometric constraint term is introduced into the L2E-based energy function for better behaving the non-rigid transformation. We evaluated the performances of the proposed method by three series of remote sensing images obtained from the unmanned aerial vehicle (UAV) and Google Earth, and compared with five state-of-the-art methods where our method shows the best alignments in most cases.


2011 ◽  
Vol 271-273 ◽  
pp. 205-210
Author(s):  
Ying Zhao Ma ◽  
Wei Li Jiao ◽  
Wang Wei

Cloud is an important factor affect the quality of optical remote sensing image. How to automatically detect the cloud cover of an image, reduce of useless data transmission, make great significance of higher data rate usefulness. This paper represent a method based on Lansat5 data, which can automatically mark the location of clouds region in each image, and effective calculated for each cloud cover, remove useless remote sensing images.


2020 ◽  
Vol 12 (21) ◽  
pp. 3547 ◽  
Author(s):  
Yuanyuan Ren ◽  
Xianfeng Zhang ◽  
Yongjian Ma ◽  
Qiyuan Yang ◽  
Chuanjian Wang ◽  
...  

Remote sensing image segmentation with samples imbalance is always one of the most important issues. Typically, a high-resolution remote sensing image has the characteristics of high spatial resolution and low spectral resolution, complex large-scale land covers, small class differences for some land covers, vague foreground, and imbalanced distribution of samples. However, traditional machine learning algorithms have limitations in deep image feature extraction and dealing with sample imbalance issue. In the paper, we proposed an improved full-convolution neural network, called DeepLab V3+, with loss function based solution of samples imbalance. In addition, we select Sentinel-2 remote sensing images covering the Yuli County, Bayingolin Mongol Autonomous Prefecture, Xinjiang Uygur Autonomous Region, China as data sources, then a typical region image dataset is built by data augmentation. The experimental results show that the improved DeepLab V3+ model can not only utilize the spectral information of high-resolution remote sensing images, but also consider its rich spatial information. The classification accuracy of the proposed method on the test dataset reaches 97.97%. The mean Intersection-over-Union reaches 87.74%, and the Kappa coefficient 0.9587. The work provides methodological guidance to sample imbalance correction, and the established data resource can be a reference to further study in the future.


2021 ◽  
Vol 13 (9) ◽  
pp. 1858
Author(s):  
Xubin Feng ◽  
Wuxia Zhang ◽  
Xiuqin Su ◽  
Zhengpu Xu

High spatial quality (HQ) optical remote sensing images are very useful for target detection, target recognition and image classification. Due to the influence of imaging equipment accuracy and atmospheric environment, HQ images are difficult to acquire, while low spatial quality (LQ) remote sensing images are very easy to acquire. Hence, denoising and super-resolution (SR) reconstruction technology are the most important solutions to improve the quality of remote sensing images very effectively, which can lower the cost as much as possible. Most existing methods usually only employ denoising or SR technology to obtain HQ images. However, due to the complex structure and the large noise of remote sensing images, the quality of the remote sensing image obtained only by denoising method or SR method cannot meet the actual needs. To address these problems, a method of reconstructing HQ remote sensing images based on Generative Adversarial Network (GAN) named “Restoration Generative Adversarial Network with ResNet and DenseNet” (RRDGAN) is proposed, which can acquire better quality images by incorporating denoising and SR into a unified framework. The generative network is implemented by fusing Residual Neural Network (ResNet) and Dense Convolutional Network (DenseNet) in order to consider denoising and SR problems at the same time. Then, total variation (TV) regularization is used to furthermore enhance the edge details, and the idea of Relativistic GAN is explored to make the whole network converge better. Our RRDGAN is implemented in wavelet transform (WT) domain, since different frequency parts could be handled separately in the wavelet domain. The experimental results on three different remote sensing datasets shows the feasibility of our proposed method in acquiring remote sensing images.


Author(s):  
Xiaochuan Tang ◽  
Mingzhe Liu ◽  
Hao Zhong ◽  
Yuanzhen Ju ◽  
Weile Li ◽  
...  

Landslide recognition is widely used in natural disaster risk management. Traditional landslide recognition is mainly conducted by geologists, which is accurate but inefficient. This article introduces multiple instance learning (MIL) to perform automatic landslide recognition. An end-to-end deep convolutional neural network is proposed, referred to as Multiple Instance Learning–based Landslide classification (MILL). First, MILL uses a large-scale remote sensing image classification dataset to build pre-train networks for landslide feature extraction. Second, MILL extracts instances and assign instance labels without pixel-level annotations. Third, MILL uses a new channel attention–based MIL pooling function to map instance-level labels to bag-level label. We apply MIL to detect landslides in a loess area. Experimental results demonstrate that MILL is effective in identifying landslides in remote sensing images.


Sign in / Sign up

Export Citation Format

Share Document