A Novel Coastline Detection Algorithm Based on Modified Iterative Selection Method

2014 ◽  
Vol 602-605 ◽  
pp. 1864-1867
Author(s):  
Hong Yu Chen ◽  
Xiao Fei Shi ◽  
Lei Feng ◽  
Yue Long Zhang ◽  
Yan Hua Li

Misjudgment often occurred in low contrast remote sensing images, because most widely used image segmentation algorithms often have a larger threshold. To overcome this problem, a novel coastline detection algorithm is proposed. A restriction function is involved into conventional iterative selection process. According to langrage multiplier, a modified iterative selection model is formulated. This modified method utilizes the gradient of images to obtain an optimal threshold. A region grouping rule is proposed to distinguish land and sea. Experimental results show superior performance of proposed method in terms of accuracy. As an application, our method has been applied to extract the coastline of the remote sensing image with promising results.

2018 ◽  
Vol 10 (12) ◽  
pp. 1934 ◽  
Author(s):  
Bao-Di Liu ◽  
Wen-Yang Xie ◽  
Jie Meng ◽  
Ye Li ◽  
Yanjiang Wang

In recent years, the collaborative representation-based classification (CRC) method has achieved great success in visual recognition by directly utilizing training images as dictionary bases. However, it describes a test sample with all training samples to extract shared attributes and does not consider the representation of the test sample with the training samples in a specific class to extract the class-specific attributes. For remote-sensing images, both the shared attributes and class-specific attributes are important for classification. In this paper, we propose a hybrid collaborative representation-based classification approach. The proposed method is capable of improving the performance of classifying remote-sensing images by embedding the class-specific collaborative representation to conventional collaborative representation-based classification. Moreover, we extend the proposed method to arbitrary kernel space to explore the nonlinear characteristics hidden in remote-sensing image features to further enhance classification performance. Extensive experiments on several benchmark remote-sensing image datasets were conducted and clearly demonstrate the superior performance of our proposed algorithm to state-of-the-art approaches.


Author(s):  
X. J. Shan ◽  
P. Tang

Given the influences of illumination, imaging angle, and geometric distortion, among others, false matching points still occur in all image registration algorithms. Therefore, false matching points detection is an important step in remote sensing image registration. Random Sample Consensus (RANSAC) is typically used to detect false matching points. However, RANSAC method cannot detect all false matching points in some remote sensing images. Therefore, a robust false matching points detection method based on Knearest- neighbour (K-NN) graph (KGD) is proposed in this method to obtain robust and high accuracy result. The KGD method starts with the construction of the K-NN graph in one image. K-NN graph can be first generated for each matching points and its K nearest matching points. Local transformation model for each matching point is then obtained by using its K nearest matching points. The error of each matching point is computed by using its transformation model. Last, L matching points with largest error are identified false matching points and removed. This process is iterative until all errors are smaller than the given threshold. In addition, KGD method can be used in combination with other methods, such as RANSAC. Several remote sensing images with different resolutions and terrains are used in the experiment. We evaluate the performance of KGD method, RANSAC + KGD method, RANSAC, and Graph Transformation Matching (GTM). The experimental results demonstrate the superior performance of the KGD and RANSAC + KGD methods.


2018 ◽  
Vol 11 (1) ◽  
pp. 47 ◽  
Author(s):  
Nan Wang ◽  
Bo Li ◽  
Qizhi Xu ◽  
Yonghua Wang

Automatic ship detection technology in optical remote sensing images has a wide range of applications in civilian and military fields. Among most important challenges encountered in ship detection, we focus on the following three selected ones: (a) ships with low contrast; (b) sea surface in complex situations; and (c) false alarm interference such as clouds and reefs. To overcome these challenges, this paper proposes coarse-to-fine ship detection strategies based on anomaly detection and spatial pyramid pooling pcanet (SPP-PCANet). The anomaly detection algorithm, based on the multivariate Gaussian distribution, regards a ship as an abnormal marine area, effectively extracting candidate regions of ships. Subsequently, we combine PCANet and spatial pyramid pooling to reduce the amount of false positives and improve the detection rate. Furthermore, the non-maximum suppression strategy is adopted to eliminate the overlapped frames on the same ship. To validate the effectiveness of the proposed method, GF-1 images and GF-2 images were utilized in the experiment, including the three scenarios mentioned above. Extensive experiments demonstrate that our method obtains superior performance in the case of complex sea background, and has a certain degree of robustness to external factors such as uneven illumination and low contrast on the GF-1 and GF-2 satellite image data.


2021 ◽  
Vol 2138 (1) ◽  
pp. 012016
Author(s):  
Shuangling Zhu ◽  
Guli Nazi·Aili Mujiang ◽  
Huxidan Jumahong ◽  
Pazi Laiti·Nuer Maiti

Abstract A U-Net convolutional network structure is fully capable of completing the end-to-end training with extremely little data, and can achieve better results. When the convolutional network has a short link between a near input layer and a near output layer, it can implement training in a deeper, more accurate and effective way. This paper mainly proposes a high-resolution remote sensing image change detection algorithm based on dense convolutional channel attention mechanism. The detection algorithm uses U-Net network module as the basic network to extract features, combines Dense-Net dense module to enhance U-Net, and introduces dense convolution channel attention mechanism into the basic convolution unit to highlight important features, thus completing semantic segmentation of dense convolutional remote sensing images. Simulation results have verified the effectiveness and robustness of this study.


Author(s):  
Jing Zhang ◽  
Qianlan Zhou ◽  
Li Zhuo ◽  
Wenhao Geng ◽  
Suyu Wang

With the rapid development of remote sensing technology, searching the similar image is a challenge for hyperspectral remote sensing image processing. Meanwhile, the dramatic growth in the amount of hyperspectral remote sensing data has stimulated considerable research on content-based image retrieval (CBIR) in the field of remote sensing technology. Although many CBIR systems have been developed, few studies focused on the hyperspectral remote sensing images. A CBIR system for hyperspectral remote sensing image using endmember extraction is proposed in this paper. The main contributions of our method are that: (1) the endmembers as the spectral features are extracted from hyperspectral remote sensing image by improved automatic pixel purity index (APPI) algorithm; (2) the spectral information divergence and spectral angle match (SID–SAM) mixed measure method is utilized as a similarity measurement between hyperspectral remote sensing images. At last, the images are ranked with descending and the top-[Formula: see text] retrieved images are returned. The experimental results on NASA datasets show that our system can yield a superior performance.


2021 ◽  
Vol 13 (21) ◽  
pp. 4443
Author(s):  
Bo Jiang ◽  
Guanting Chen ◽  
Jinshuai Wang ◽  
Hang Ma ◽  
Lin Wang ◽  
...  

The haze in remote sensing images can cause the decline of image quality and bring many obstacles to the applications of remote sensing images. Considering the non-uniform distribution of haze in remote sensing images, we propose a single remote sensing image dehazing method based on the encoder–decoder architecture, which combines both wavelet transform and deep learning technology. To address the clarity issue of remote sensing images with non-uniform haze, we preliminary process the input image by the dehazing method based on the atmospheric scattering model, and extract the first-order low-frequency sub-band information of its 2D stationary wavelet transform as an additional channel. Meanwhile, we establish a large-scale hazy remote sensing image dataset to train and test the proposed method. Extensive experiments show that the proposed method obtains greater advantages over typical traditional methods and deep learning methods qualitatively. For the quantitative aspects, we take the average of four typical deep learning methods with superior performance as a comparison object using 500 random test images, and the peak-signal-to-noise ratio (PSNR) value using the proposed method is improved by 3.5029 dB, and the structural similarity (SSIM) value is improved by 0.0295, respectively. Based on the above, the effectiveness of the proposed method for the problem of remote sensing non-uniform dehazing is verified comprehensively.


2021 ◽  
Vol 13 (19) ◽  
pp. 3835
Author(s):  
Wenzong Jiang ◽  
Lifei Zhao ◽  
Yanjiang Wang ◽  
Weifeng Liu ◽  
Baodi Liu

In recent years, the application of deep learning has achieved a huge leap in the performance of remote sensing image super-resolution (SR). However, most of the existing SR methods employ bicubic downsampling of high-resolution (HR) images to obtain low-resolution (LR) images and use the obtained LR and HR images as training pairs. This supervised method that uses ideal kernel (bicubic) downsampled images to train the network will significantly degrade performance when used in realistic LR remote sensing images, usually resulting in blurry images. The main reason is that the degradation process of real remote sensing images is more complicated. The training data cannot reflect the SR problem of real remote sensing images. Inspired by the self-supervised methods, this paper proposes a cross-dimension attention guided self-supervised remote sensing single-image super-resolution method (CASSISR). It does not require pre-training on a dataset, only utilizes the internal information reproducibility of a single image, and uses the lower-resolution image downsampled from the input image to train the cross-dimension attention network (CDAN). The cross-dimension attention module (CDAM) selectively captures more useful internal duplicate information by modeling the interdependence of channel and spatial features and jointly learning their weights. The proposed CASSISR adapts well to real remote sensing image SR tasks. A large number of experiments show that CASSISR has achieved superior performance to current state-of-the-art methods.


Author(s):  
Xiaochuan Tang ◽  
Mingzhe Liu ◽  
Hao Zhong ◽  
Yuanzhen Ju ◽  
Weile Li ◽  
...  

Landslide recognition is widely used in natural disaster risk management. Traditional landslide recognition is mainly conducted by geologists, which is accurate but inefficient. This article introduces multiple instance learning (MIL) to perform automatic landslide recognition. An end-to-end deep convolutional neural network is proposed, referred to as Multiple Instance Learning–based Landslide classification (MILL). First, MILL uses a large-scale remote sensing image classification dataset to build pre-train networks for landslide feature extraction. Second, MILL extracts instances and assign instance labels without pixel-level annotations. Third, MILL uses a new channel attention–based MIL pooling function to map instance-level labels to bag-level label. We apply MIL to detect landslides in a loess area. Experimental results demonstrate that MILL is effective in identifying landslides in remote sensing images.


2021 ◽  
Vol 13 (6) ◽  
pp. 1060
Author(s):  
Luc Baudoux ◽  
Jordi Inglada ◽  
Clément Mallet

CORINE Land-Cover (CLC) and its by-products are considered as a reference baseline for land-cover mapping over Europe and subsequent applications. CLC is currently tediously produced each six years from both the visual interpretation and the automatic analysis of a large amount of remote sensing images. Observing that various European countries regularly produce in parallel their own land-cover country-scaled maps with their own specifications, we propose to directly infer CORINE Land-Cover from an existing map, therefore steadily decreasing the updating time-frame. No additional remote sensing image is required. In this paper, we focus more specifically on translating a country-scale remote sensed map, OSO (France), into CORINE Land Cover, in a supervised way. OSO and CLC not only differ in nomenclature but also in spatial resolution. We jointly harmonize both dimensions using a contextual and asymmetrical Convolution Neural Network with positional encoding. We show for various use cases that our method achieves a superior performance than the traditional semantic-based translation approach, achieving an 81% accuracy over all of France, close to the targeted 85% accuracy of CLC.


2021 ◽  
Vol 13 (5) ◽  
pp. 869
Author(s):  
Zheng Zhuo ◽  
Zhong Zhou

In recent years, the amount of remote sensing imagery data has increased exponentially. The ability to quickly and effectively find the required images from massive remote sensing archives is the key to the organization, management, and sharing of remote sensing image information. This paper proposes a high-resolution remote sensing image retrieval method with Gabor-CA-ResNet and a split-based deep feature transform network. The main contributions include two points. (1) For the complex texture, diverse scales, and special viewing angles of remote sensing images, A Gabor-CA-ResNet network taking ResNet as the backbone network is proposed by using Gabor to represent the spatial-frequency structure of images, channel attention (CA) mechanism to obtain stronger representative and discriminative deep features. (2) A split-based deep feature transform network is designed to divide the features extracted by the Gabor-CA-ResNet network into several segments and transform them separately for reducing the dimensionality and the storage space of deep features significantly. The experimental results on UCM, WHU-RS, RSSCN7, and AID datasets show that, compared with the state-of-the-art methods, our method can obtain competitive performance, especially for remote sensing images with rare targets and complex textures.


Sign in / Sign up

Export Citation Format

Share Document