scholarly journals Retrieval of Maize Leaf Area Index Using Hyperspectral and Multispectral Data

2018 ◽  
Vol 10 (12) ◽  
pp. 1942 ◽  
Author(s):  
Sosdito Mananze ◽  
Isabel Pôças ◽  
Mario Cunha

Field spectra acquired from a handheld spectroradiometer and Sentinel-2 images spectra were used to investigate the applicability of hyperspectral and multispectral data in retrieving the maize leaf area index in low-input crop systems, with high spatial and intra-annual variability, and low yield, in southern Mozambique, during three years. Seventeen vegetation indices, comprising two and three band indices, and nine machine learning regression algorithms (MLRA) were tested for the statistical approach while five cost functions were tested in the look-up-table (LUT) inversion approach. The three band vegetation indices were selected, specifically the modified difference index (mDId: 725; 715; 565) for the hyperspectral dataset and the modified simple ratio (mSRc: 740; 705; 865) for the multispectral dataset of field spectra and the three band spectral index (TBSIb: 665; 865; 783) for the Sentinel-2 dataset. The relevant vector machine was the selected MLRA for the two datasets of field spectra (multispectral and hyperspectral) while the support vector machine was selected for the Sentinel-2 data. When using the LUT inversion technique, the minimum contrast estimation and the Bhattacharyya divergence cost functions were the best performing. The vegetation indices outperformed the other two approaches, with the TBSIb as the most accurate index (RMSE = 0.35). At the field scale, spectral data from Sentinel-2 can accurately retrieve the maize leaf area index in the study area.

2020 ◽  
Vol 58 (2) ◽  
pp. 826-840 ◽  
Author(s):  
Yuanheng Sun ◽  
Qiming Qin ◽  
Huazhong Ren ◽  
Tianyuan Zhang ◽  
Shanshan Chen

2019 ◽  
Vol 12 (1) ◽  
pp. 16 ◽  
Author(s):  
Naichen Xing ◽  
Wenjiang Huang ◽  
Qiaoyun Xie ◽  
Yue Shi ◽  
Huichun Ye ◽  
...  

Leaf area index (LAI) is a key parameter in plant growth monitoring. For several decades, vegetation indices-based empirical method has been widely-accepted in LAI retrieval. A growing number of spectral indices have been proposed to tailor LAI estimations, however, saturation effect has long been an obstacle. In this paper, we classify the selected 14 vegetation indices into five groups according to their characteristics. In this study, we proposed a new index for LAI retrieval-transformed triangular vegetation index (TTVI), which replaces NIR and red bands of triangular vegetation index (TVI) into NIR and red-edge bands. All fifteen indices were calculated and analyzed with both hyperspectral and multispectral data. Best-fit models and k-fold cross-validation were conducted. The results showed that TTVI performed the best predictive power of LAI for both hyperspectral and multispectral data, and mitigated the saturation effect. The R2 and RMSE values were 0.60, 1.12; 0.59, 1.15, respectively. Besides, TTVI showed high estimation accuracy for sparse (LAI < 4) and dense canopies (LAI > 4). Our study provided the value of the Red-edge bands of the Sentinel-2 satellite sensors in crop LAI retrieval, and demonstrated that the new index TTVI is applicable to inverse LAI for both low-to-moderate and moderate-to-high vegetation cover.


2020 ◽  
Vol 12 (9) ◽  
pp. 1406 ◽  
Author(s):  
Chris W. Cohrs ◽  
Rachel L. Cook ◽  
Josh M. Gray ◽  
Timothy J. Albaugh

Leaf area index (LAI) is an important biophysical indicator of forest health that is linearly related to productivity, serving as a key criterion for potential nutrient management. A single equation was produced to model surface reflectance values captured from the Sentinel-2 Multispectral Instrument (MSI) with a robust dataset of field observations of loblolly pine (Pinus taeda L.) LAI collected with a LAI-2200C plant canopy analyzer. Support vector machine (SVM)-supervised classification was used to improve the model fit by removing plots saturated with aberrant radiometric signatures that would not be captured in the association between Sentinel-2 and LAI-2200C. The resulting equation, LAI = 0.310SR − 0.098 (where SR = the simple ratio between near-infrared (NIR) and red bands), displayed good performance ( R 2 = 0.81, RMSE = 0.36) at estimating the LAI for loblolly pine within the analyzed region at a 10 m spatial resolution. Our model incorporated a high number of validation plots (n = 292) spanning from southern Virginia to northern Florida across a range of soil textures (sandy to clayey), drainage classes (well drained to very poorly drained), and site characteristics common to pine forest plantations in the southeastern United States. The training dataset included plot-level treatment metrics—silviculture intensity, genetics, and density—on which sensitivity analysis was performed to inform model fit behavior. Plot density, particularly when there were ≤618 trees per hectare, was shown to impact model performance, causing LAI estimates to be overpredicted (to a maximum of X i + 0.16). Silviculture intensity (competition control and fertilization rates) and genetics did not markedly impact the relationship between SR and LAI. Results indicate that Sentinel-2’s improved spatial resolution and temporal revisit interval provide new opportunities for managers to detect within-stand variance and improve accuracy for LAI estimation over current industry standard models.


Geographies ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 178-191
Author(s):  
Nonjabulo Neliswa Tshabalala ◽  
Onisimo Mutanga ◽  
Mbulisi Sibanda

Wetland ecosystems are being modified and threatened due to anthropogenic activities and climate change, hence the urgent need for wetland restoration. Wetland rehabilitation is important in the reversal of these dire conditions, and this can be pursued through restoring damaged wetland ecosystems and recovering wetland vegetation. Wetland biophysical properties such as leaf area index (LAI) are important indicators of vegetation productivity and stress. Therefore, the study sought to test the potential of Sentinel-2 multispectral instrument (MSI) derived standard bands, traditional vegetation indices and red-edge derived vegetation indices in estimating wetland vegetation LAI across natural and rehabilitated wetlands. Traditional field surveys were carried out for LAI measurement of wetland vegetation using the LAI-2200 Plant Canopy Analyser. Partial Least Squares Regression (PLSR) algorithms were used to compare the estimation strength of models derived from all Sentinel-2 MSI bands, conventional vegetation indices and red-edge derived vegetation indices. Leave-one-out cross-validation (LOOCV) was completed on a selected measured dataset to evaluate the performance and accuracy of the estimation models. The optimal models for estimating wetland vegetation LAI were produced based on red-edge bands centred between the 705–783 nm as well as the 865 nm (Band 8a) of the electromagnetic spectrum. The results showed that vegetation indices derived from red-edge bands performed better at estimating LAI for both wetlands with a root mean square error of prediction (RMSE) of 0.32 m2/m2 and R2 of 0.61 for the natural wetland, and RMSE of 0.51 m2/m2 and R2 of 0.75 for the rehabilitated wetland. The optimal model for predicting LAI across natural and rehabilitated wetlands was attained based on red-edge bands centred at 705 nm (Band 5), 740 nm (Band 6), 783 nm (Band 7) as well as 865 nm (Band 8a) yielding a RMSE of 0.51 m2/m2 and R2 of 0.54. Overall, the results underscore the importance of remotely sensed derived data and vegetation indices in the optimal characterisation of wetland vegetation productivity which can be utilized in the monitoring and management of wetland ecosystems.


Author(s):  
Aldo Restu Agi Prananda ◽  
Muhammad Kamal ◽  
Denny Wijaya Kusuma

Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 505
Author(s):  
Gregoriy Kaplan ◽  
Offer Rozenstein

Satellite remote sensing is a useful tool for estimating crop variables, particularly Leaf Area Index (LAI), which plays a pivotal role in monitoring crop development. The goal of this study was to identify the optimal Sentinel-2 bands for LAI estimation and to derive Vegetation Indices (VI) that are well correlated with LAI. Linear regression models between time series of Sentinel-2 imagery and field-measured LAI showed that Sentinel-2 Band-8A—Narrow Near InfraRed (NIR) is more accurate for LAI estimation than the traditionally used Band-8 (NIR). Band-5 (Red edge-1) showed the lowest performance out of all red edge bands in tomato and cotton. A novel finding was that Band 9 (Water vapor) showed a very high correlation with LAI. Bands 1, 2, 3, 4, 5, 11, and 12 were saturated at LAI ≈ 3 in cotton and tomato. Bands 6, 7, 8, 8A, and 9 were not saturated at high LAI values in cotton and tomato. The tomato, cotton, and wheat LAI estimation performance of ReNDVI (R2 = 0.79, 0.98, 0.83, respectively) and two new VIs (WEVI (Water vapor red Edge Vegetation Index) (R2 = 0.81, 0.96, 0.71, respectively) and WNEVI (Water vapor narrow NIR red Edge Vegetation index) (R2 = 0.79, 0.98, 0.79, respectively)) were higher than the LAI estimation performance of the commonly used NDVI (R2 = 0.66, 0.83, 0.05, respectively) and other common VIs tested in this study. Consequently, reNDVI, WEVI, and WNEVI can facilitate more accurate agricultural monitoring than traditional VIs.


Sign in / Sign up

Export Citation Format

Share Document